[image: image58.wmf]Add Highest Order Segments

X

View Highest Order Segments

X

X

X

X

Modify Highest Order Segments

X

Delete Highest Order Segments

X

Add Inventoried Routes

X

View Inventoried Routes

X

X

X

X

Modify Inventoried Routes

X

Delete Inventoried Routes

X

Add Features (includes: Structures, Intersections, Political boundaries, Mile

Markers, and Railroad Crossings)

X

View Features (includes: Structures, Intersections, Political boundaries, Mile

Markers, and Railroad Crossings)

X

X

X

X

Modify Features (includes: Structures, Intersections, Political boundaries, Mile

Markers, and Railroad Crossings)

X

Delete Features (includes: Structures, Intersections, Political boundaries, Mile

Markers, and Railroad Crossings)

X

Add Road Names

X

X

View Road Names

X

X

X

X

Modify Road Names

X

X

Delete Road Names

X

X

Add Secondary Route Names

X

X

View Secondary Route Names

X

X

X

X

Modify Secondary Route Names

X

X

Delete Secondary Route Names

X

X

Accident Milepost

X

Ordinance Milepost

X

Run Error Log Report

X

Run Uncoded Roads Exception Report

X

X

Run Uncoded Municipalities Exception Report

X

X

Run Unmileposted Ordinances Report

X

X

Run Municipalities Report

X

X

Run Roads Report

X

X

Run Highest Order Segments Report

X

X

Run Features Report

X

X

Run Fiche Report

X

X

Run Intersection Analysis Report

X

X

Save Intersection Analysis Report

X

X

Run Strip Analysis Report

X

X

Save Strip Analysis Report

X

X

Add Users

X

View Users

X

X

X

X

View Users and Roles

X

Modify Users

X

Modify Own Password

X

X

X

X

X

Modify Other Password

X

Assign User Roles

X

Remove User Roles

X

Delete Users

X

Functions

Roles

Traffic Engineering Accident Analysis System

Physical Architecture

for

The State of North Carolina

Department of Transportation

Information Systems Technology

June 30, 1999

Version 2.0

Deliverable #74-17

Presented by:

Keane, Inc.

2525 Meridian Parkway

Suite 400

Durham, NC 27713

 (919) 544-0891

Table of Contents

11
Overview

1.1
Background
1
1.2
Objective
1
2
Use Case Model
3
2.1
TEAAS Actors
4
2.2
TEAAS Use Case Model
5
2.2.1
User Maintenance
6
2.2.2
Modify Password
6
2.2.3
Identify Lookup Exceptions
7
2.2.4
Maintain Road Names
7
2.2.5
Maintain Secondary Routes
7
2.2.6
Process Queries
8
2.2.7
Accident Milepost
8
2.2.8
Ordinance Milepost
8
2.2.9
Update Features + Milepost
9
2.2.10
Update Inventoried Routes + Milepost
9
2.2.11
Update Highest Order Segments + Milepost
9
2.2.12
Add Inventoried Route
10
3
class Model
11
3.1
InventoriedRoute
16
3.2
HighestOrderSegment
16
3.3
Feature
17
3.4
Structure
17
3.5
Intersection
18
3.6
MileMarker
18
3.7
RailroadCrossing
19
3.8
PoliticalBoundary
19
3.9
ChangeListener
19
3.10
Accident
20
3.11
Ordinance
20
3.12
Location
21
3.13
Encoder
22
3.14
FeatureName
22
3.15
SecondaryRoute
23
3.16
State
23
3.17
County
24
3.18
Municipality
24
3.19
Lookup
25
3.20
Audit
25
3.21
Error
26
3.22
User
26
3.23
Role
27
3.24
Function
27
3.25
Report
28
4
Interaction Model
29
4.1
User Maintenance
30
4.2
Modify Password
30
4.3
Identify Lookup Exceptions
31
4.3.1
Identify Municipality Exceptions
31
4.3.2
Identify Road Exceptions
31
4.4
Maintain Road Names
32
4.5
Maintain Secondary Routes
33
4.6
Accident Milepost
33
4.7
Ordinance Milepost
35
4.8
Update Features + Milepost
36
4.8.1
Structures
36
4.8.2
Intersections
37
4.8.3
Mile Markers
38
4.8.4
Railroad Crossings
38
4.8.5
Political Boundaries
39
4.9
Update Inventoried Routes + Milepost
40
4.10
Update Highest Order Segments + Milepost
41
4.11
Add Inventoried Routes
42
5
Physical system Architecture
43
5.1
Logical Process to Physical Class Mapping
43
5.2
Interface Definition Language Specifications
46
5.3
Data Access Layer Specifications
46
5.4
Common Services
47
5.5
Interfaces to Other Systems
47
5.5.1
DOH
47
5.5.2
DMV
47
5.5.3
HSRC
48
5.6
Auditing and Archiving
48
5.7
Roles and Functions
48
5.8
Special Modules
50
5.9
Object/Database Interaction Matrix
50
6
distributed system architecture
52
6.1
Class Distribution
52
6.2
Table Distribution
53
6.3
Distributed Data Architecture
53
7
physical data model
54
7.1
Entity Relationship Diagram
55
7.2
Table Descriptions
58
7.2.1
MVC_COUNTY Table
59
7.2.2
MVC_COUNTY_REFERENCE Table
60
7.2.3
MVC_COUNTY_CODE Table
60
7.2.4
MVC_CITY_POPULATION Table
61
7.2.5
FTV_INVD_ROUTE Table
62
7.2.6
FTV_HO_SEGMENT Table
63
7.2.7
FTV_INTERSECTION Table
67
7.2.8
FTV_MILE_MARKER Table
69
7.2.9
FTV_BOUNDARY Table
70
7.2.10
FTV_RAILROAD_CROSSING Table
72
7.2.11
FTV_STRUCTURE Table
73
7.2.12
FTV_CHARACTERISTIC Table
74
7.2.13
FTV_DRCTNL_CHARACTERISTIC Table
77
7.2.14
FTV_MASTER_LOOKUP Table
80
7.2.15
FTV_FEATURE_NAME Table
81
7.2.16
FTV_SCNDRY_ROUTE
82
7.2.17
FTV_USER Table
82
7.2.18
FTV_USER_ROLE Table
83
7.2.19
FTV_ROLE Table
84
7.2.20
FTV_ROLE_FUNCTION Table
85
7.2.21
FTV_FUNCTION Table
86
7.2.22
FTV_USER_REPORT Table
86
7.2.23
FTV_STRIP_ROAD Table
88
7.2.24
FTV_INTERSECTION_ROAD Table
89
7.2.25
FTV_ACCIDENT_ADJUSTMENT Table
90
7.2.26
FTV_FEATURE_INCLUSION Table
90
7.2.27
FTV_ERROR_CODE Table
91
7.2.28
FTV_ERROR_LOG Table
92
7.2.29
FTV_ORDINANCE Table
93
Appendix A: Report requirements
96

1 Overview

This section provides a brief background to the Traffic Engineering Accident Analysis System (TEAAS) project and describes the overall objective of this document relative to the project.

1.1 Background

The State of North Carolina Department of Transportation-Information Systems Technology (DOT-IST) has requested that Keane, Inc., design, construct, test, and implement a new N-tier client/server system, using Common Object Request Broker Architecture (CORBA) technology and an Oracle database, for the Traffic Engineering and Safety Systems Management Unit (TSSMU) to replace the current mainframe Traffic Engineering Accident Analysis System (TEAAS).

The project officially began in January 1999 with the Technical Environment phase. Two deliverables, the TEAAS Technical Architecture Document and the TEAAS Standards and Guidelines document, were delivered in March 1999.

This document, the TEAAS Physical Architecture, is the first deliverable of the Technical Design and Prototyping phase of the project. The purpose of this phase is to transform the logical architecture into a physical architecture, distribute the physical components into the various client and server nodes, design and prototype a graphical user interface, and produce rigorous specifications which meet the previously identified business requirements. Version 1 of this document was delivered in May 1999. Version 2 incorporates all changes discovered during prototyping and high-level design.

1.2 Objective

This document includes several object-oriented (OO) models that aid in the development of any system that is to incorporate OO technology. It is important to note that development of certain OO models found within this document is typically performed during the business requirements definition phase of a development project. However, given that the decision to incorporate OO technologies came well after the TEAAS business requirements were initially documented, those models have been included in this document for review and formal acceptance. A brief description and overview will accompany each model. This document will not detail OO methodologies, concepts, or terminology.

The primary objective of this deliverable is to identify and define the following in support of the TEAAS application:

· Use case model

· Class model

· Interaction model

· Physical system architecture

· Distributed system architecture

· Physical data model.

Each of the aforementioned elements will be addressed in greater detail in subsequent sections of this document.

In addition to the elements mentioned above, an overview of the report requirements for TEAAS is provided in Appendix A.

2 Use Case Model

Use case models seek to represent the functionality of a system from the perspective of entities interacting with the system. They provide an external view that is independent of the internal structure of the system. A use case model is composed of one or more use case diagrams, the key elements of which are actors and use cases.

An actor defines a coherent set of roles that external entities, such as humans, machines, or other systems, can play when interacting with the system being developed. An actor is depicted as a stick figure with the actor name below the figure, as shown below.

[image: image2.wmf]Actor Name

A use case is a sequence of steps or transactions performed by an actor in dialog with the system. A use case is depicted as an oval with the use case name below the oval, as shown below.

[image: image3.wmf]Use Case Name

An actor communicates with a use case to utilize the system in a specific way. The communication is depicted with an arrow drawn between the actor and the use case, as shown below.

[image: image4.wmf]Use Case Name

Actor Name

A use case can be related to another use case through a uses relationship. A uses relationship allows common behavior to be packaged into separate use cases that may be shared by other use cases. For example, one use case may use another use case as part of its process, however the second use case may also be used independently of the first by an actor. A generic example of a uses relationship between use cases is shown below.

[image: image5.wmf]Actor #1

Use Case #1

Use Case #2

<<uses>>

2.1 TEAAS Actors

There are six actors who communicate in various ways with TEAAS: the TEAAS System Administrator, TEAAS Primary Data Maintainer, TEAAS Secondary Data Maintainer, TEAAS Technical Query User, TEAAS Public Query User, and the Division of Motor Vehicles' (DMV) Crash system.

[image: image6.wmf]TEAAS Secondary

Data Maintainer

TEAAS Primary Data

Maintainer

TEAAS System

Administrator

DMV Crash

TEAAS Technical

Query User

TEAAS Public Query

User

TEAAS Use Case Model

The following diagram depicts the TEAAS use case model.

[image: image7.wmf]Accident

MilePost

DMV Crash

User Maintenance

Provide Query Output

Ordinance Milepost

TEAAS Technical

Query User

TEAAS Public Query

User

TEAAS System

Administrator

Modify Password

Update Highest Order Segments

Update Inventoried Route

Add Inventoried Route

Update Features + Milepost

<<

uses>>

Maintain Road Names

<<

uses>>

Maintain Secondary

 Routes

Identify Lookup

 Exceptions

<<

uses>>

TEAAS Secondary

Data Maintainer

TEAAS Primary Data

Maintainer

Process Queries

<<

uses>>

<<

uses>>

<<

uses>>

<<

uses>>

<<

uses>>

TEAAS

Subsequent sections break this model down into its component use case diagrams. A brief explanation accompanies each use case diagram.

2.1.1 User Maintenance

[image: image8.wmf]User Maintenance

Modify Password

<<uses>>

TEAAS System

Administrator

The TEAAS System Administrator may add/maintain users through the User Maintenance process. Users can be added or removed, roles can be assigned to or taken away from users based upon business needs, and passwords can be set or reset using the Modify Password process.

2.1.2 Modify Password

[image: image9.wmf]TEAAS Secondary

Data Maintainer

TEAAS Primary Data

Maintainer

TEAAS Technical

Query User

TEAAS Public Query

User

TEAAS System

Administrator

Modify Password

The TEAAS Primary Data Maintainer, TEAAS Secondary Data Maintainer, TEAAS System Administrator, TEAAS Technical Query User, and the TEAAS Public Query User may change their system login password through the Modify Password process.

2.1.3 Identify Lookup Exceptions

[image: image10.wmf]TEAAS Technical

Query User

TEAAS Public Query

User

Identify Lookup

 Exceptions

The TEAAS Technical Query User and the TEAAS Public Query User may request that the Identify Lookup Exceptions process retrieve uncoded roads and/or municipalities from the accidents data store. These exceptions are presented to the user in report form.

2.1.4 Maintain Road Names

[image: image11.wmf]Maintain Road Names

TEAAS Primary Data

Maintainer

TEAAS Secondary

Data Maintainer

Identify Lookup

 Exceptions

Accident Milepost

<<uses>>

<<uses>>

The TEAAS Primary Data Maintainer and the TEAAS Secondary Data Maintainer may perform maintenance on the feature names data store based on the exception report obtained during the Identify Lookup Exceptions process. The data maintainer will determine the information requiring modification in the feature names data store and perform the necessary updates.

When new roads are added and/or a new code value is assigned, accident records referencing those roads must have their road fields re-coded and must be remileposted. These records are identified for remileposting.

2.1.5 Maintain Secondary Routes

[image: image12.wmf]Maintain Secondary

Routes

TEAAS Secondary

Data Maintainer

TEAAS Primary

Data Maintainer

The TEAAS Primary Data Maintainer and the TEAAS Secondary Data Maintainer may perform maintenance on the secondary route data store. The data maintainer will determine the information requiring modification in the secondary route data store and perform the necessary updates.

2.1.6 Process Queries

[image: image13.wmf]Provide Query Output

Process Queries

<<uses>>

TEAAS Technical

Query User

TEAAS Public Query

User

The TEAAS Technical Query User and the TEAAS Public Query User may each perform the Process Queries function. The Process Queries function will use the Provide Query Output process to present the output of the queries in various formats (print, save to file, etc.).

2.1.7 Accident Milepost

[image: image14.wmf]Accident Milepost

DMV Crash

The DMV Crash system may use the Accident Milepost process to provide accident mileposts. The Accident Milepost process will receive accident location data from the Crash system and provide milepost data back to the Crash system.

2.1.8 Ordinance Milepost

[image: image15.wmf]Ordinance Milepost

TEAAS System

Administrator

The TEAAS System Administrator may use the Ordinance Milepost process to provide ordinance mileposts. The ordinance location information will be loaded into a database table in TEAAS and the Ordinance Milepost process will read the location data and write the updated milepost data back to the ordinance table. The mileposted ordinance data will be the output of this process.

2.1.9 Update Features + Milepost

[image: image16.wmf]Accident

 MilePost

Update Features + Milepost

<<uses>>

TEAAS Primary Data

Maintainer

The TEAAS Primary Data Maintainer may correct and/or add feature data to any of the roadway features data stores (intersections, mile markers, political boundaries, railroad crossing, and structures) through the Update Features + Milepost process. When maintenance of intersections, mile markers, or political boundaries may affect the mileposts of accidents referencing that feature, that feature is marked for the remileposting process.

2.1.10 Update Inventoried Routes + Milepost

[image: image17.wmf]TEAAS Primary Data

Maintainer

Update Inventoried Routes

Accident

 MilePost

<<uses>>

The TEAAS Primary Data Maintainer may correct and/or add data to the inventoried route data stores. The TEAAS Primary Data Maintainer will be notified if a feature milepost is outside the range of the beginning and ending milepost for the route. When update of an inventoried route may affect the milepost value for an accident, the record is marked for mileposting.

2.1.11 Update Highest Order Segments + Milepost

[image: image18.wmf]TEAAS Primary Data

Maintainer

Update Highest Order

Segments

Accident

MilePost

<<

uses>>

The TEAAS Primary Data Maintainer may correct and/or add data to the highest order segment data store. This update will be performed manually by the TEAAS Primary Data Maintainer through the Update Highest Order Segments process. When updates to segment data may affect the milepost value of an accident, the record is marked for mileposting.

2.1.12 Add Inventoried Route

[image: image19.wmf]Accident

 MilePost

Add Inventoried Route

Update Features + Milepost

<<uses>>

<<uses>>

TEAAS Primary Data

Maintainer

The TEAAS Primary Data Maintainer may add a new inventoried route to the inventoried routes data store using the Add Inventoried Route process. Because the addition of a new inventoried route will involve the inclusion of one or more features along that inventoried route, one or more of the features data stores must be updated and any affected accidents must be remileposted.

3 class Model

A class model, also known as a business object model, represents a structural view of the real-world business concepts for the system under development. A class represents a real world concept within the problem domain being analyzed. A class may have data, behavior, and relationships to other classes.

To aid in interpreting the TEAAS class model, diagramming conventions are described here.

Convention
Description

[image: image20.wmf]County

countyCode

 : String

countyDescription

 : String

County

()

encode()

Each class is represented by a box divided into three sections. The top section contains the class name. The second section identifies the data, or attributes, of the class. The third section identifies the class behavior, or methods.

A class can be thought of as a template from which objects are created, or instantiated. An instance of the County class is an object that contains information about a single county. The methods on that object can interact with the object’s attributes.

countyCode : String
This convention is used to identify the type of the attribute. The type can be thought of as being similar to datatype, although OO allows any class to be a type.

[image: image21.wmf]
The lock shown beside an attribute identifies the attribute as private to the class. The value of the attribute is only known to methods of the object itself. Methods of other objects cannot interact directly with a private attribute.

[image: image22.wmf]
The key shown beside an attribute identifies the attribute as protected to the class. The value of the attribute is only known to methods of the object itself or by methods of subclass objects.

encode(textDescription : String) : String
The convention used to identify methods. Methods can be thought of as being similar to procedures or functions. Information may be included within the parentheses identifying parameters that are passed to the method. The return type may be specified outside the parentheses. In the example provided, a string text description is passed as a parameter to the encode method, and a string is returned.

[image: image23.wmf]
Indicates the method is public and can be invoked by any other object.

[image: image24.png]

Indicates the method is protected and can be invoked only by methods of its own object or by methods of subclass objects.

[image: image1.wmf]KEANE

A relationship between two classes is represented by a line ending with an arrowhead. This association means one class uses another class.

[image: image25.wmf]
Identifies a generalization relationship. The point of the triangle is attached to the more general, or base class. The line connects to the more specific, or subclass. The relationship is read “the <subclass> is a <base class>.” For example, a mile marker is a feature.

[image: image26.wmf]
Identifies composition relationships, in which instances of the component class must all belong to the same container object. The diamond is attached to the container class and the line connects to the component class. The relationship is read “the <container class> has a <component class>.” For example, an inventoried route has a feature.

[image: image27.wmf]1

*

Multiplicity is represented by a number or an asterisk at the end of the relationship line. It represents the number of instances of a class involved in the relationship. The asterisk represents an infinite number. In the example, one instance of the class on the left end of the relationship can have infinite instances of the class on the right end of the relationship. For example, one inventoried route can have infinite features.

The TEAAS class model that follows does not include any classes for interfaces, data access, or reporting. Interface classes include application interfaces and Graphical User Interface (GUI) classes.

Data access components facilitate the interaction between business rule components and the data in persistent storage (i.e., Oracle database tables). Means for accessing data can be either incorporated within the appropriate business rule component(s) or kept separate from the business rule components. TEAAS data access components will be kept separate from the business rules components.

Data access components and report classes will be addressed in the module specifications.

The TEAAS class model that follows has been divided across three pages for ease of viewing. Each class depicted within the class model is described in subsequent sections.

[image: image49.wmf]

[image: image50.wmf]KEANE

[image: image51.wmf]KEANE

3.1 InventoriedRoute

The InventoriedRoute class contains inventoried route information that may be maintained by the TEAAS Primary Data Maintainer. Route modifications and/or additions may affect the mileposting of accidents.

The Inventoried Route class is the container class for both the Feature and HighestOrderSegment classes.

Attributes

Name
Type
Description

CountyNum
Integer
Unique number assigned to a County

inventoriedRouteID
String
Inventoried Route ID

milepostBeginNum
Float
Milepost beginning number

milepostEndNum
Float
Milepost ending number

reMilepostReqdInd
Char
Remilepost required indicator

Operations

Name
Description

InventoriedRoute()
The constructor method for the class

modifyInventoriedRoute()
Provides a means to maintain inventoried route data

isInventoriedRoute()
Determines whether the eight-digit code provided is contained in the Inventoried Route table

findRouteFeature()
Searches the roadway feature data stores to find the eight-digit code presented as input

getHighestOrderSegment()
Returns the highest order route and corresponding milepost value when given a milepost value on a lower order route.

3.2 HighestOrderSegment

The HighestOrderSegment class provides data from the highest order segments (coinciding segments) data store for manual manipulation by the TEAAS Primary Data Maintainer. The HighestOrderSegment class is a component of the InventoriedRoute class.

Attributes

Name
Type
Description

segmentMilepostBeginNum
Float
Segment milepost beginning number

segmentMilepostEndNum
Float
Segment milepost ending number

initialSegmentInd
Char
Initial segment indicator

HORouteID
String
Highest order route identifier

HORMilepostBeginNum
Float
Highest order route milepost begin number

HORMilepostEndNum
Float
Highest order route milepost ending number

inventoryDirectionCode
Char
Inventory direction code

milepostDeltaQuantity
Float
Milepost delta quantity

reMilepostReqdInd
Char
Remilepost required indicator

Operations

Name
Description

HighestOrderSegment()
The constructor method for the class

modifyHighestOrderSegment()
Provides a means to maintain highest order segment data

3.3 Feature

The Feature class generalizes the Structure, Intersection, MileMarker, RailroadCrossing, and PoliticalBoundary classes. The Feature class is a component of the InventoriedRoute class.

Attributes

Name
Type
Description

milepostNum
Float
Feature milepost number

Operations

Name
Description

Feature()
The constructor method for the class

identifyFeatureType()
Determines which of the feature classes to instantiate, depending on the input provided

3.4 Structure

The Structure class is a subclass of the Feature class. It contains the information pertaining to structures that can be maintained by the TEAAS Primary Data Maintainer.

Attributes

Name
Type
Description

structureID
String
Structure identifier

structureTypeCode
String
Structure type code

Operations

Name
Description

Structure()
The constructor method for the class

modifyStructure()
Provides a means to maintain structure data

3.5 Intersection

The Intersection class is a subclass of the Feature class. It contains the information pertaining to intersections that can be maintained by the TEAAS Primary Data Maintainer. If the change may affect the mileposting of accidents, the record is marked for remileposting.

Attributes

Name
Type
Description

intersectingRouteID
String
Intersecting route identifier

intersectionTypeCode
Char
Intersection type code

intersectingRouteMilepostNum
Float
Intersecting route milepost number

nextFeatureDirectionCode
Char
Next feature direction code

loopConditionInd
Char
Loop condition indicator

outsideCountyInd
Char
Outside the county indicator

reMilepostReqdInd
Char
Remilepost required indicator

Operations

Name
Description

Intersection()
The constructor method for the class

modifyIntersection()
Provides a means to maintain intersection data

3.6 MileMarker

The MileMarker class is a subclass of the Feature class. It contains the information pertaining to mile markers that can be maintained by the TEAAS Primary Data Maintainer. If the change may affect the mileposting of accidents, the record is marked for remileposting.

Attributes

Name
Type
Description

mileageNumber
Integer
Mileage number

nextFeatureDirectionCode
Char
Next feature direction code

outsideCountyInd
Char
Outside the county indicator

reMilepostReqdInd
Char
Remilepost required indicator

Operations

Name
Description

mileMarker()
The constructor method for the class

modifyMileMarker()
Provides a means to maintain mile marker data

3.7 RailroadCrossing

The RailroadCrossing class is a subclass of the Feature class. It contains the information pertaining to railroad crossings that can be maintained by the TEAAS Primary Data Maintainer.

Attributes

Name
Type
Description

railroadCrossingID
String
Railroad crossing identifier

Operations

Name
Description

RailroadCrossing()
The constructor method for the class

modifyRRCrossing()
Provides a means to maintain railroad crossing data

3.8 PoliticalBoundary

The PoliticalBoundary class is a subclass of the Feature class. It contains the information pertaining to political boundaries that can be maintained by the TEAAS Primary Data Maintainer. If the change may affect the mileposting of accidents, the record is marked for remileposting.

Attributes

Name
Type
Description

boundaryID
String
Boundary identifier

nextFeatureDirectionCode
Char
Next feature direction code

loopConditionInd
Char
Loop condition indicator

reMilepostReqdInd
Char
Remilepost required indicator

Operations

Name
Description

PoliticalBoundary()
The constructor method for the class

modifyPoliticalBoundary()
Provides a means to maintain political boundary data

3.9 ChangeListener

The ChangeListener class receives input sent to its notifyChange() method. The changes sent to the ChangeListener class are those that have an effect on accident mileposts. The ChangeListener identifies the accidents that require remileposting to the Accident class, of which it is a component.

Operations

Name
Description

notifyChange()
Receives any road or feature changes that will result in a requirement for remileposting.

3.10 Accident

The Accident class is the container class for both the ChangeListener and the Location classes. An instance of the Accident class is created for each accident that requires mileposting. Accident location data for the accident is then instantiated in a Location object for that accident, and the accident is remileposted.

Accidents can be mileposted on demand by the DMV Crash system, which provides accident information to TEAAS. TEAAS returns milepost information to the Crash system.

Accidents can also be remileposted because of changes to feature or road data within TEAAS. In this case, the ChangeListener class identifies the accidents to be remileposted.

Attributes

Name
Type
Description

AccidentID
String
Accident identifier

Operations

Name
Description

Accident()
The constructor method for the class

milepostAccident()
Initiates mileposting for the accident location

3.11 Ordinance

The Ordinance class is the container class for the Location class. An instance of the Ordinance class is created for each ordinance that requires mileposting. Location data for the ordinance is then instantiated in two Location objects for that ordinance, one each for the beginning and ending reference features.

Attributes

Name
Type
Description

countyNum
Integer
Unique number assigned to a County

ordinanceTypeCode
String
Ordinance type code

ordinanceNum
String
Ordinance number

beginReferenceUnit
String
The unit of measure for the distance from the beginning reference feature

endReferenceUnit
String
The unit of measure for the distance from the ending reference feature

segmentLength
float
Ordinance segment length

Operations

Name
Description

Ordinance()
The constructor method for the class

milepostOrdinance()
Initiates mileposting for the ordinance location

convertUnit()
Converts unit of measure to miles

3.12 Location

The Location class is a component of both the Accident and Ordinance classes. It contains the location information required for mileposting, as well as the attributes required as output from the mileposting process. For each accident to be mileposted, one instance of the Location class is instantiated. For each ordinance to be mileposted, two instances of the Location class are instantiated, one each for the beginning and ending reference features. The Location class uses the Encoder class to convert text descriptions into eight-digit codes; and it uses the InventoriedRoute class to identify the milepost location of the referenced feature.

Attributes

Name
Type
Description

onRoad
String
On road

referenceFeature
String
Reference feature

towardFeature
String
Toward feature

distanceFromReferenceFeature
Float
Distance from reference feature

directionFromReferenceFeature
String
Direction from reference feature

directionToTowardFeature
String
Direction to toward feature

milepostRoute
String
The original route used to successfully milepost the accident or ordinance

milepostNumber
Float
The milepost number for the original route used to successfully milepost the accident or ordinance

milepostQualityInd
Char
Milepost quality indicator

coincidingRouteInd
Char
Coinciding route indicator

rampOrServiceRoad
Boolean
Identifies if the on road is a ramp or a service road

HOMilepostRoute
String
The highest order route, corresponding to the original route, which will be stored on the accident or ordinance record as the route on which the accident or ordinance was mileposted

HOMilepostNum
Float
The milepost number, as calculated for the highest order route, which will be stored on the accident or ordinance record as the milepost value for the accident or ordinance

Operations

Name
Description

Location()
The constructor method for the class

setLocation()
Provides a means to set location values

getLocation()
Provides a means to retrieve location values

milepost()
Initiates and provides the output for the milepost process. The milepost() method invokes the encodeLocations() method on the Location class and also invokes the isInventoriedRoute(), findRouteFeature(), and getHighestOrderSegment() methods on the InventoriedRoute class.

encodeLocations()
Converts onRoad, referenceFeature, and towardFeature to eight-digit code values

3.13 Encoder

The Encoder class is used to convert text descriptions to code values for features. When given a text description, it identifies what type the description is, and calls upon the appropriate class to return the corresponding code value.

Attributes

Name
Type
Description

TextDescription
String
Text for a feature

Code
String
Code value corresponding to the text description

Operations

Name
Description

Encoder()
The constructor method for the class

encode()
The generic encode method, first invokes the identifyTextDescription() method to determine the type of text, then invokes the encode() method of the appropriate class to return the code value

identifyTextDescription()
When given a text description, this method determines what type of feature it is for

3.14 FeatureName

The FeatureName class contains the information pertaining to feature names that can be maintained by the TEAAS Primary Data Maintainer and the TEAAS Secondary Data Maintainer. If modifications to a road or the addition of a road may affect the milepost of accidents, the record will be marked for remileposting. The FeatureName class is used by the Encoder class to convert text descriptions of features into eight-digit codes.

Attributes

Name
Type
Description

featureCode
String
Feature code

featureDescription
String
Feature description

featurePreferredTextInd
Char
Feature preferred text indicator

reMilepostReqdInd
Char
Remilepost required indicator

Operations

Name
Description

FeatureName()
The constructor method for the class

encode()
When given a text description for a feature, provides the corresponding eight-digit code

modifyFeatureName()
Provides a means to maintain feature name data

3.15 SecondaryRoute

The SecondaryRoute class contains the information pertaining to secondary routes that can be maintained by the TEAAS Primary Data Maintainer and the TEAAS Secondary Data Maintainer.

Attributes

Name
Type
Description

countyNum
Integer
Unique number assigned to a County

roadCode
String
Road code

alternateRoadDescription
String
Alternate Road Description

Operations

Name
Description

SecondaryRoute()
The constructor method for the class

modifySecondaryRoute()
Provides a means to maintain secondary route data

3.16 State

The State class contains the information needed to convert between text descriptions of states and their corresponding code values. The State class is used by the Encoder class.

Attributes

Name
Type
Description

stateCode
String
State code

stateDescription
String
State description

Operations

Name
Description

State()
The constructor method for the class

encode()
When given a text description for a state, provides the corresponding code value

3.17 County

The County class contains the information needed to convert between text descriptions of counties and their corresponding code values. The County class is used by the Encoder class, and is the container for the Municipality class.

Attributes

Name
Type
Description

countyNum
Integer
Unique number assigned to a County

countyDescription
String
County description

Operations

Name
Description

County()
The constructor method for the class

encode()
When given a text description for a county, provides the corresponding code value

3.18 Municipality

The Municipality class is a component of the County class, and is used by the Encoder class to convert text descriptions of municipalities into code values.

Attributes

Name
Type
Description

municipalityCode
String
Municipality code

municipalityDescription
String
Municipality description

Operations

Name
Description

Municipality()
The constructor method for the class

encode()
When given a text description for a municipality, provides the corresponding code value

3.19 Lookup

The Lookup class contains the information needed to validate code values at data entry.

Attributes

Name
Type
Description

FieldCode
String
Field code value. Each field using lookup values has a corresponding code

ValueCode
String
Value code represents a valid value for the field

FieldText
String
The text description of the field

ValueText
String
The text description corresponding to a valid value

TableGroupText
String
The table group to which the field(s) belong

Operations

Name
Description

Lookup()
The constructor method for the class

GetValueCodes()
Returns all valid value codes that correspond with the fieldCode

GetAllValueText()
Returns all the value text corresponding to the value codes

GetValueText()
Returns the valueText corresponding to a particular valueCode

GetValueCode()
Returns the valueCode corresponding to a particular valueText

getAll()
Returns all valueCode and valueText values

3.20 Audit

The Audit class contains the information needed to provide the user identification and date-timestamp.

Attributes

Name
Type
Description

UserID
String
User identifier

Timestamp
String
Date-timestamp

Operations

Name
Description

Audit()
The constructor method for the class

GetUser()
Retrieves the value of userID

SetUser()
Sets the value of userID

GetDate()
Retrieves the value of timestamp

SetDate()
Sets the value of timestamp

3.21 Error

The Error class contains the information needed to handle application errors.

Attributes

Name
Type
Description

ErrorCode
String
The error code of the error that occurred

ErrorMessage
String
The error message of the error that occurred

ErrorTypeCode
Char
The error type code of the error that occurred (error or override)

ErrorActionCode
Char
The error action code of the error that occurred; indicates the action the application will take regarding the particular error

ErrorParamValue
String
The error parameter values captured when the error occurred

TraceFileLocation
String
The location of the Java trace file created on the local computer

Operations

Name
Description

Error()
The constructor method for the class

Display()
Displays an error/override (yes/no) dialog.

UpdateLog()
Provides a means to update error log data

3.22 User

The User class contains information and methods pertaining to the users of the system. It is the container class for the Role class. The TEAAS System Administrator can modify and/or add users to the system.

Attributes

Name
Type
Description

UserID
String
User identifier

Password
String
The user’s encrypted password

FirstName
String
The user’s first name

MiddleName
String
The user’s middle name

LastName
String
The user’s last name

PhoneNumber
String
The user’s phone number

Operations

Name
Description

User()
The constructor method for the class

ModifyUser()
Provides a means to modify a specific user’s information

SetPassword()
Provides a means to create or change a user’s password

ModifyRoles()
Provides a means to maintain a user’s role assignments

3.23 Role

The Role class contains information pertaining to the roles available to users within the system. It is a component of the User class and the container for the Function class.

Attributes

Name
Type
Description

RoleID
String
Role identifier

RoleText
String
Role description

Operations

Name
Description

Role()
The constructor method for the class

GetFunctions()
Provides a means to retrieve the functions associated with the roleID

3.24 Function

The Function class contains information pertaining to the functions associated with a role assigned to a user. It is a component of the Role class.

Attributes

Name
Type
Description

FunctionID
String
Function identifier

FunctionText
String
Function description

ParentFunctionID
String
The identifier for the parent function

GUIClassName
String
GUI class name

Operations

Name
Description

Function()
The constructor method for the class

GetParentFunctionID()
Provides a means to retrieve the parentFunctionID

3.25 Report

The Report class permits generation of exception reports.

Operations

Name
Description

IdentifyMunicipalityExceptions()
Provides a means to generate the exception report for municipality names

IdentifyRoadExceptions()
Provides a means to generate the exception report for road names

4 Interaction Model

An interaction model represents how objects or instances of classes defined in the class model interact in order to carry out specific scenarios described by the use case model. As such, it provides the link between the requirements (use case model) and the evolving class specifications (class model). The interaction model can be depicted as a collaboration diagram or a sequence diagram. A collaboration diagram is an interaction model that shows the sequence of messages that implement an operation or a transaction, whereas a sequence diagram traces the execution of an interaction in time.

TEAAS uses collaboration diagrams to depict the interaction between various objects. The diagramming conventions are described here to aid in interpreting the TEAAS interaction-collaboration models.

Convention
Description

[image: image28.wmf]Actor Name

As in the use cases, an actor defines a coherent set of roles that external entities, such as humans, machines, or other systems, can play when interacting with the system being developed. An actor is depicted as a stick figure with the actor name below the figure.

[image: image29.wmf]objectName :

ClassName

This convention is used to identify an object (objectName) and its class (ClassName) separated by colon (:). An object has state, behavior, and identity. The structure and behavior of similar objects are defined in their common class. An object is an instance of a class.

[image: image30.wmf]objectName :

ClassName

The multiple objects that are instances of the same class are represented using this convention. It is used when multiple instances of a class are necessary to perform an action.

[image: image52.wmf]Intersection

intersectingRouteID : String

intersectionTypeCode : char

intersectingRouteMilepostNum : float

nextFeatureDirectionCode : char

loopConditionInd : char

outsideCountyInd : char

reMilepostReqdInd : char

Intersection ()

modifyIntersection ()

MileMarker

mileageNumber :

int

nextFeatureDirectionCode : char

outsideCountyInd : char

reMilepostReqdInd : char

MileMarker ()

modifyMileMarker ()

RailroadCrossing

railroadCrossingID : String

RailroadCrossing ()

modifyRRCrossing ()

PoliticalBoundary

boundaryID : String

nextFeatureDirectionCode : char

loopConditionInd : char

reMilepostReqdInd : char

PoliticalBoundary ()

modifyPoliticalBoundary ()

Structure

structureID : String

structureTypeCode : String

Structure ()

modifyStructure ()

Audit

userID : String

timestamp : String

Audit ()

getUser () : String

setUser (

userID : String) :

boolean

getDate () : String

setDate (timestamp : String) :

boolean

Report

identifyMunicipalityExceptions () :

int

identifyRoadExceptions () :

int

1

*

HighestOrderSegment

segmentMilepostBeginNum : float

segmentMilepostEndNum : float

initialSegmentInd : char

HORouteID

 : String

HORMilepostBeginNum

 : float

HORMilepostEndNum

 : float

inventoryDirectionCode : char

milepostDeltaQuantity : float

reMilepostReqdInd : char

HighestOrderSegment ()

modifyHighestOrderSegment ()

1

InventoriedRoute

countyNum :

int

inventoriedRouteID : String

milepostBeginNum : float

milepostEndNum : float

reMilepostReqdInd : char

InventoriedRoute (

routeID

 : String)

modifyInventoriedRoute ()

isInventoriedRoute () :

boolean

findRouteFeature (

featureID : String)

getHighestOrderSegment (

mpRoute : String, ...)

*

Feature

milepostNum : float

Feature ()

identifyFeatureType ()

SecondaryRoute

countyNum :

int

roadCode : String

alternateRoadDescription : String

SecondaryRoute ()

modifySecondaryRoute ()

This indicates a link between two objects. Objects interact through their links to other objects. A link is an instance of an association, analogous to an object being an instance of a class. The existence of a link between two classes symbolizes a path of communication between instances of the classes: one object may send messages to another. Links can support multiple messages in either direction.

[image: image53.wmf]1

Ordinance

countyNum :

int

ordinanceTypeCode : String

ordinanceNum : String

beginReferenceUnit : String

endReferenceUnit : String

segmentLength : float

Ordinance ()

milepostOrdinance () :

boolean

convertUnit (

inValue : float,

valueType : String) : float

2

Encoder

textDescription : String

code : String

Encoder ()

encode (

textDescription : String) : String

identifyTextDescription (

textDescription : String) : String

InventoriedRoute

countyNum :

int

inventoriedRouteID : String

milepostBeginNum : float

milepostEndNum : float

reMilepostReqdInd : char

InventoriedRoute (

routeID

 : String)

modifyInventoriedRoute ()

isInventoriedRoute () :

boolean

findRouteFeature (

featureID : String)

getHighestOrderSegment (

mpRoute : String, ...)

1

1

Location

onRoad : String

referenceFeature : String

towardFeature : String

distanceFromReferenceFeature : float

directionFromReferenceFeature : String

directionToTowardFeature : String

milepostRoute : String

milepostNumber : float

milepostQualityInd : char

coincidingRouteInd : char

rampOrServiceRoad :

boolean

HOMilepostRoute

 : String

HOMilepostNum

 : float

Location ()

setLocation (

onRoad : String, ...) : Location

getLocation (

loc : Location,

onRoad : String, ...) :

boolean

milepost (

loc : Location,

onRoad : String, ...) :

boolean

encodeLocations () :

boolean

encode

isInventoriedRoute,

findRouteFeature,

getHighestOrderSegment

1

Accident

accidentID : String

Accident ()

milepostAccident () :

boolean

1

Feature

milepostNum : float

Feature ()

identifyFeatureType ()

ChangeListener

notifyChange (

chg : String, type : String)

notifyChange

FeatureName

featureCode : String

featureDescription : String

featurePreferredTextInd : char

reMilepostReqdInd : char

FeatureName ()

encode (

textDescription : String) : String

modifyFeatureName () :

boolean

.
This indicates a self-link by an object.

[image: image54.wmf]Error

errorCode : String

errorMessage : String

errorTypeCode : char

errorActionCode : char

errorParamValue : String

traceFileLocation : String

Error (

errorCode : String)

display () :

boolean

updateLog (

traceFileName : String) : void

Lookup

fieldCode : String

valueCode : String

fieldText : String

valueText : String

tableGroupText : String

Lookup (fieldCode : String)

getValueCodes () : String

getValueCode (text : String) : String

getAllValueText () : String

getValueText (fieldCode : String) : String

getAll () : Enumeration

State

stateCode : String

stateDescription : String

State ()

encode (textDescription : String) : String

FeatureName

featureCode : String

featureDescription : String

featurePreferredTextInd : char

reMilepostReqdInd : char

FeatureName ()

encode (textDescription : String) : String

modifyFeatureName () : boolean

Encoder

textDescription : String

code : String

Encoder ()

encode (textDescription : String) : String

identifyTextDescription (textDescription : String) : String

encode

1

County

countyNum : int

countyDescription : String

County ()

encode (textDescription : String) : String

*

Municipality

municipalityCode : String

municipalityDescription : String

Municipality ()

encode (textDescription : String) : String

1

User

userID : String

password : String

firstName : String

middleName : String

lastName : String

phoneNumber : String

User ()

modifyUser ()

setPassword ()

modifyRoles ()

*

1

Role

roleID : String

roleText : String

Role ()

getFunctions () : String

*

Function

functionID : String

functionText : String

parentFunctionID : String

GUIClassName : String

Function ()

getParentFunctionID () : String

1: (checkVal) messageName (param)
This convention indicates a message between two objects, or a self-message. A message conveys the source object's invocation of an operation of the destination object. Messages are carried by links. Messages can be of forward or reverse type, depending on which object is invoking the operation. Messages are preceded by a number indicating the operating sequence (1, 2, 3, etc.), then a possible constraint to be checked (checkVal) prior to performing the action. Messages can have multiple parameters separated by commas, passed in parentheses after the message name.

The following section headings correspond with the use cases provided earlier. Each section includes a collaboration diagram as well as a sequential narrative description for each diagram. The diagrams and descriptions that follow are not intended to be fully comprehensive and address all possible scenarios for a given process. The information provided here is an overview of each process and the main classes and methods it will use. Detailed module specifications that will be developed later in this project will address the full functionality of each of these processes.

4.1 User Maintenance

[image: image31.wmf]TEAAS System

Administrator

role : Role

user : User

2:

setPassword

()

1:

modifyUser

()

3:

modifyRoles

()

1. The TEAAS System Administrator may add, delete, and/or modify users in the system by using the modifyUser() method of the User class.

2. The setPassword() method of the User class may be invoked to create a password for a new user or change the password for an existing user.

3. The modifyRoles() method of the Role class may be invoked to assign roles to new users or change roles of existing users.

4.2 Modify Password

[image: image32.wmf]TEAAS User

user : User

1:

setPassword

()

1. All TEAAS users can change their password by using the setPassword() method of the User class.

4.3 Identify Lookup Exceptions

The Identify Lookup Exceptions process has been broken down into Identify Municipality Exceptions and Identify Road Exceptions sub-processes. These sub-processes are described in the following sections.

4.3.1 Identify Municipality Exceptions

[image: image33.wmf]TEAAS Query

User

report : Report

1:

identifyMunicipalityExceptions

()

2: Deliver municipality exceptions report

1. Either of the TEAAS Query Users (Public or Technical) may use the identifyMunicipalityExceptions() method of the Report class to identify accident records on Crash’s location data store where there is no municipality code (i.e., the municipality text from the accident record is not contained within the municipality data store).

2. The municipality exceptions report is delivered to the TEAAS Query User.

4.3.2 Identify Road Exceptions

[image: image34.wmf]TEAAS Query

User

report : Report

1:

identifyRoadExceptions

()

2: Deliver road exceptions report

1. Either of the TEAAS Query Users (Public or Technical) may use the identifyRoadExceptions() method of the Report class to identify accident records on Crash’s location data store where there is no road code for the on road, reference road, or toward road (i.e., the text from the accident record is not contained within the feature name data store).

2. The road exceptions report is delivered to the TEAAS Query User.

4.4 Maintain Road Names

[image: image35.wmf]featureName :

FeatureName

TEAAS Data

Maintainer

Road exceptions report

changeListener :

ChangeListener

accident : Accident

3:

notifyChange

()

2:

modifyFeatureName

()

1: Provides input

4:

milepostAccident

()

1. Either of the TEAAS Data Maintainers (Primary or Secondary) gets input from the road exceptions report created by the Identify Road Exceptions part of the Identify Lookup Exceptions process.

2. The modifyFeatureName() method of the FeatureName class allows the TEAAS Data Maintainer to add, update, or delete feature names and codes. It also allows the TEAAS Data Maintainer to associate a preferred feature name to a feature code.

3. If the changes performed to the feature name data store may affect the milepost of accidents, the record is marked for remileposting.

4. The milepostAccident() method of the Accident class is invoked to remilepost accidents that have the modified feature names in them.

4.5 Maintain Secondary Routes

[image: image36.wmf]secondaryRoute :

SecondaryRoute

TEAAS Data

Maintainer

1:

modifySecondaryRoute

()

1. Either of the TEAAS Data Maintainers (Primary or Secondary) can use the modifySecondaryRoute() method of the SecondaryRoute class to add, update, or delete secondary route and alternate road text.

4.6 Accident Milepost

[image: image37.wmf]DMV Crash

location : Location

encoder : Encoder

countyRoute :

CountyRoute

feature : Feature

accident : Accident

3:

successEncode

:=

encodeLocations ()

5:

identifyTextDescription

()

1:

milepostAccident

()

4:

code := encode ()

6: (

successEncode) is

InventoriedRoute

()

7:

findRouteFeature

()

9:

getHighestOrderSegment

()

8:

identifyFeatureType

()

2: milepost (

loc,

onRoad

, ...)

1. DMV Crash will initiate mileposting for an accident (as opposed to an ordinance) via an interface between the Crash and TEAAS systems. Accident location data will be provided via this interface. TEAAS will instantiate objects of the Accident class and the milepostAccident() method will be invoked.

2. The milepost() method of the Location class is invoked to begin the actual mileposting process.

3. The encodeLocations() method of the Location class verifies that the on road, reference feature, and toward feature have been encoded. If they have not, it invokes methods for encoding. The encodeLocations() method returns a flag, which is captured in the successEncode variable.

4. The encode() method of the Encoder class may be invoked multiple times for encoding the on road, reference feature, and toward feature. The method encodes the text description into an eight-digit feature code by first invoking the identifyTextDescription() method of the Encoder class to identify the feature type (see #5). After the feature type has been identified, the encode() method may then calculate the feature code value for a feature type of mile marker, or it may invoke the encode() method on instances of the State, County, Municipality, or FeatureName classes.

5. In order for the encode() method to complete the conversion of text to code, the identifyTextDescription() method on the Encoder class must be invoked. This method identifies if the text description refers to a road, political boundary, or mile marker.

6. If the successEncode flag is set to true, the isInventoriedRoute() method of the InventoriedRoute class is invoked to check if the on road is an inventoried route. If it is not, the reference feature is checked to see if it is an inventoried route.

7. The findRouteFeature() method of the InventoriedRoute class is then invoked to check if the reference feature and toward feature are inventoried features along the on road. It first invokes the identifyFeatureType() method of the Feature class to accomplish this.

8. The identifyFeatureType() method identifies the type of reference feature and toward feature based upon their respective eight-digit codes. The feature type can be an intersection, a mile marker, or a political boundary.

9. The remaining steps of mileposting are performed at this stage. Upon successful milepost, the getHighestOrderSegment() method is invoked on the InventoriedRoute class to identify the highest order inventoried route and the corresponding milepost value.

4.7 Ordinance Milepost

[image: image38.wmf]TEAAS System

Administrator

location : Location

countyRoute :

CountyRoute

feature : Feature

ordinance : Ordinance

3:

successEncode

 :=

encodeLocations ()

1:

milepostOrdinance

()

4: (

successEncode) is

InventoriedRoute

()

5:

findRouteFeature

()

2: milepost (

loc,

onRoad

, ...)

6:

identifyFeatureType

()

7:

getHighestOrderSegment

()

1. The TEAAS System Administrator will initiate mileposting of ordinances using the milepostOrdinance() method of the Ordinance class.

2. The milepost() method of the Location class is invoked to begin the actual mileposting process.

3. The encodeLocations() method of the Location class verifies that the on road and reference feature have been encoded. The encodeLocations() method returns a flag, which is captured in the successEncode variable.

4. If the successEncode flag is set to true, the isInventoriedRoute() method of the InventoriedRoute class is invoked to check if the on road is an inventoried route.

5. The findRouteFeature() method of the InventoriedRoute class is then invoked to check if the reference feature is an inventoried feature along the on road. It first invokes the identifyFeatureType() method of the Feature class to accomplish this.

6. The identifyFeatureType() method identifies the type of reference feature based upon its eight-digit code. The feature type can be an intersection, a political boundary, or a mile marker.

7. The remaining steps of mileposting are performed at this stage. Upon successful milepost, the getHighestOrderSegment() method is invoked on the InventoriedRoute class to identify the highest order inventoried route and the corresponding milepost value.

4.8 Update Features + Milepost

The Update Features + Milepost function has been broken down into separate sub-functions: one each for Structures, Intersections, Mile Markers, Railroad Crossings, and Political Boundaries. Each of these is addressed below. These diagrams and their descriptions allow for update of features that may or may not require that accidents be remileposted.

4.8.1 Structures

[image: image39.wmf]TEAAS

Primary Data

Maintainer

structure : Structure

1:

modifyStructure

()

1. The TEAAS Primary Data Maintainer may modify structures by using the modifyStructure() method of the Structure class.

4.8.2 Intersections

[image: image40.wmf]TEAAS

Primary Data

Maintainer

intersection : Intersection

changeListener :

ChangeListener

accident : Accident

1:

modifyIntersection

()

2:

notifyChange

()

3:

milepostAccident

()

1. The TEAAS Primary Data Maintainer can modify intersections using the modifyIntersection() method of the Intersection class.

2. If the changes performed to the intersection data store may affect the milepost of accidents, the record is marked for remileposting.

3. The milepostAccident() method of the Accident class is invoked to remilepost accidents that have the modified intersections in them.

4.8.3 Mile Markers

[image: image41.wmf]TEAAS

Primary Data

Maintainer

mileMarker :

MileMarker

changeListener :

ChangeListener

accident : Accident

1:

modifyMileMarker

()

2:

notifyChange

()

3:

milepostAccident

()

1. The TEAAS Primary Data Maintainer can modify mile marker information using the modifyMileMarker() method of the MileMarker class.

2. If the changes performed to the mile marker data store may affect the milepost of accidents, the record will be marked for remileposting.

3. The milepostAccident() method of the Accident class is invoked to remilepost accidents that have the modified mile markers in them.

4.8.4 Railroad Crossings

[image: image42.wmf]railroadCrossing :

RailroadCrossing

TEAAS

Primary Data

Maintainer

1:

modifyRRCrossing

()

1. The TEAAS Primary Data Maintainer can modify railroad crossing information using the modifyRRCrossing() method of the RailroadCrossing class.

4.8.5 Political Boundaries

[image: image43.wmf]politicalBoundary :

PoliticalBoundary

changeListener :

ChangeListener

accident : Accident

TEAAS

Primary Data

Maintainer

2:

notifyChange

()

3:

milepostAccident

()

1:

modifyPoliticalBoundary

()

1. The TEAAS Primary Data Maintainer can modify political boundary information using the modifyPoliticalBoundary() method of the PoliticalBoundary class.

2. If the changes performed to the political boundary data store may affect the milepost of accidents, the record will be marked for remileposting.

3. The milepostAccident() method of the Accident class is invoked to remilepost accidents that have the modified political boundaries in them.

4.9 Update Inventoried Routes + Milepost

[image: image44.wmf]TEAAS Primary

Data Maintainer

inventoriedRoute : InventoriedRoute

1: modifyInventoriedRoute ()

changeListener : ChangeListener

2: notifyChange ()

3: milepostAccident ()

accident : Accident

1. Inventoried route end milepost information may be modified by the TEAAS Primary Data Maintainer using the modifyInventoriedRoute() method of the InventoriedRoute class.

2. If the changes performed to the inventoried route data store may affect the milepost of accidents, the record will be marked for remileposting.

3. The milepostAccident() method of the Accident class is invoked to remilepost accidents that have the inventoried route in them.

4.10 Update Highest Order Segments + Milepost

[image: image45.wmf]TEAAS

Primary Data

Maintainer

highestOrderSegment :

HighestOrderSegment

1:

modifyHighestOrderSegment

()

changeListener :

ChangeListener

2:

notifyChange

()

3:

milepostAccident

()

accident : Accident

1. The TEAAS Primary Data Maintainer may manually modify highest order (coinciding) segment information using the modifyHighestOrderSegment() method of the HighestOrderSegment class.

2. If the changes performed to the highest order segment data store may affect the milepost of accidents, the record will be marked for remileposting.

3. The milepostAccident() method of the Accident class is invoked to remilepost accidents that have the highest order segment in them.

4.11 Add Inventoried Routes

[image: image46.wmf]TEAAS

Primary Data

Maintainer

inventoriedRoute :

InventoriedRoute

1:

modifyInventoriedRoute

()

changeListener :

ChangeListener

3:

notifyChange

()

4:

milepostAccident

()

accident : Accident

feature : Feature

2:

modifyFeature

()

1. The modifyInventoriedRoute() method of the InventoriedRoute class allows the TEAAS Primary Data Maintainer to add inventoried routes in the inventoried routes data store.

2. The modifyFeature() method can be called on any of the features during the addition of an inventoried route.

3. The record will be marked for remileposting.

4. The milepostAccident() method of the Accident class is invoked to remilepost accidents that have the inventoried route in them.

5 Physical system Architecture

The primary goal of the Physical System Architecture section is to identify the processes (i.e., classes) that are required to support the business requirements within the scope of the automation boundary of the system under development.

5.1 Logical Process to Physical Class Mapping

This section maps the logical processes identified in the business requirements definition document to the physical classes described earlier in this document. The classes provide a mapping to the physical implementation of the program logic. The classes specify the attributes and the methods that their instance objects can know and perform.

The business requirements definition document identified the following logical processes for the new TEAAS system:

[1]
Refresh Data

[1.1] Scrub Data

[1.2] Encode Road Fields

[2]
Provide Milepost

[2.1] Provide Milepost Data

[2.2] Remilepost Accident Data

[3]
Maintain Data

[3.1] Maintain Accident Data

[3.2] Maintain Features

[3.2.1] Update Feature Data

[3.2.2] Synchronize Route Lengths

[3.2.3] Synchronize Coinciding Segments

[3.3] Maintain Lookup Tables

[3.3.1] Identify Lookup Exceptions

[3.3.2] Maintain City Master

[3.3.3] Maintain Street Master

[4]
Process Queries

[5]
Provide Output

These logical processes can be mapped to the physical classes identified previously in this document as depicted in the following table:

Mapping of Logical Processes to Physical Classes

Logical Process
Physical Class
Description
Implementation Language

[1]

Refresh Data

Not Applicable

[1.1]

Scrub Data

Not Applicable

[1.2]

Encode Road Fields
Encoder

State

County

Municipality

FeatureName
Encode road fields process will be performed by the five classes. Depending on the type of feature that needs to be encoded, the feature code will be calculated by the Encoder or determined by invoking methods on the other classes listed.
Java and embedded SQL

[2]

Provide Milepost

Refer to sub-processes

[2.1]

Provide Milepost Data
Accident

Ordinance

Location

Encoder

State

County

Municipality

FeatureName

InventoriedRoute

Feature

Intersection

MileMarker

RailroadCrossing

PoliticalBoundary

HighestOrderSegment

AccidentAI
Provide milepost data process creates instances of various classes in order to perform mileposting. Some of the classes will be instantiated only if the mileposting requires it (feature sub-classes, for instance). The encode road field process may be invoked if the road features are not encoded.
Java and embedded SQL

[2.2]

Remilepost Accident Data
Accident

Location

Encoder

State

County

Municipality

FeatureName

InventoriedRoute

Feature

Intersection

MileMarker

RailroadCrossing

PoliticalBoundary

HighestOrderSegment

ChangeListener

AccidentAI
Remilepost accident data process creates instances of various classes in order to perform mileposting. Some of the classes will be instantiated only if the mileposting requires it (feature sub-classes, for instance). The encode road field process may be invoked if the road features are not encoded.
Java and embedded SQL

[3]

Maintain Data

Refer to sub-processes

[3.1]

Maintain Accident Data

Not Applicable

[3.2]

Maintain Features

Refer to sub-processes

[3.2.1]

Update Feature Data
Feature

Structure

Intersection

MileMarker

RailroadCrossing

PoliticalBoundary

StructureUI

IntersectionUI

MileMarkerUI

RailroadCrossingUI

PoliticalBoundaryUI
Update feature data maintains the features by invoking various methods: modifyStructure(), modifyIntersection(), modifyMileMarker(), modifyRRCrossing(), and modifyPoliticalBoundary(). The changes to Intersection, MileMarker, and PoliticalBoundary classes may require remilepost of the accident data.
Java and embedded SQL

[3.2.2]

Synchronize Route Lengths
InventoriedRoute

InventoriedRouteUI
Synchronize route lengths process will perform this operation by invoking modifyInventoriedRoute() method on InventoriedRoute class.
Java and embedded SQL

[3.2.3]

Synchronize Coinciding Segments
HighestOrderSegment

HighestOrderSegmentUI
Synchronize coinciding segments can be performed by the modifyHighestOrderSegment() method of the HighestOrderSegment class.
Java and embedded SQL

[3.3]

Maintain Lookup Tables

Refer to sub-processes

[3.3.1]

Identify Lookup Exceptions
Report

ReportUI
Identify lookup exceptions can be handled by the identifyMunicipalityExceptions() and identifyRoadExceptions() methods of the Report class. The requested reports will be created for the user.
Java and embedded SQL

[3.3.2]

Maintain City Master

Not Applicable

[3.3.3]

Maintain Street Master
FeatureName

FeatureNameUI

SecondaryRoute

SecondaryRouteUI
The maintain street master process can be accomplished by the modifyFeatureName() method of the FeatureName class. The changes may require remilepost of the accident data. The alternate secondary route names can be maintained by using modifySecondaryRoute() method on the SecondaryRoute class.
Java and embedded SQL

[4]

Process Queries
Report
The queries will have a set of GUI classes to receive input from the user and invoke the report writer to generate reports.
Java and embedded SQL

[5]

Provide Output

Provide output process for reporting, will be handled by the report writer.
Java and embedded SQL

User Management
User

Role

UserManagerUI
This group lists the classes used to manage users, passwords, and roles.
Java and embedded SQL

Other Classes
StartupUI

LogonUI

MenuBuilderUI

Error

ErrorUI

Function

Lookup
This group lists classes for other functionality needed by the application.
Java and embedded SQL

The logical processes that are identified as “Not Applicable” in the description indicate that the functionality has been removed from the scope of the TEAAS application. There are some logical processes which have a description of “Refer to sub-processes.” These processes have sub-processes that will identify the classes needed to perform them. The classes ending with “AI” represent the Application Interface classes, utilized by other applications as well as internal classes. The classes ending with “UI” represent the GUI classes to perform the process management. The “User Management” and “Other Classes” processes are required to provide additional functionality for the application but were not listed as separate functionality in the requirements definition document.

5.2 Interface Definition Language Specifications

TEAAS will be using CORBA for the communications between the client and the server. These communications from an application perspective will be defined using the CORBA Interface Definition Language (IDL). CORBA IDLs will be written for all the distributed TEAAS objects. The objects will be represented using a combination of “struct” and “interface” depending on the operations that the object should handle. An IDL file will contain the complete IDL specifications for a module in TEAAS. The module groupings will be formed based on the functionality. If there is a need to share an object between different modules, common objects will be kept in a separate IDL file, which will be included in other IDL definitions.

The Java code implementing the object definitions in the IDL form the business rules layer of the TEAAS architecture. The components in the business rules layer interact with the data access components to retrieve data from the TEAAS Oracle database. It has been decided that the business rules Java classes and the data access Java classes will reside on the same address space. This decision was made to avoid the response-time over head of distributed object communication and because the probability of these classes being in different machines is very low. Thus, IDLs will not be written for data access classes. The physical database however could be on a different machine.

5.3 Data Access Layer Specifications

As mentioned in the Class Model section, data access classes will be created to facilitate interaction between persistent storage and the physical classes discussed in this document. All data access will be performed through the data access classes in accordance with the established technical architecture for TEAAS, with one exception—data access for reporting purposes. Any reports requested by the user will utilize the report-writing tool, EnterpriseSoft Report Writer 3.0 (ERW), which will directly access data in persistent storage.

The business rules components will not directly access the data stored in the database tables. The business rules components will invoke methods on data access components to perform data retrieval, update, or deletion of data. IDLs will not be used for the interaction between the business rules and data access components.

The data access layer allows the business rules access to the stored data in the database. The data access components will perform the following actions:

· Perform connection to the TEAAS Oracle database using JDBC

· Execute SQL queries on the database, performing selects, inserts, updates, and deletes

· Handle the results of the query

· Handle exceptions and warnings.

Each object defined in the business rules layer has a specific data access object. The data access objects have methods with different signatures to perform various actions on behalf of a business rules object. The data access layer will cover all areas of functionality required by the business rules layer. The data access components isolate the application from the database connectivity and querying, thus easing debugging and future application maintenance. Isolating the data access layer hides the details of the database access and provides additional security.

5.4 Common Services

The following classes have been identified as common services in TEAAS. These are utility classes that will be used by many other classes in TEAAS:

· Audit

· Lookup

· Error

· Report

· ChangeListener.

Refer to the Class Model section of this document for a more detailed discussion of these common services.

In addition to the classes listed above, other common services may be introduced and utilized in TEAAS. Examples include common classes to be used for GUI screen development and a special wrapper class that will be used in conjunction with ERW’s reporting facility. Refer to the Special Modules section for a brief overview of this special wrapper class.

5.5 Interfaces to Other Systems

TEAAS will provide interfaces to other entities for mileposting accidents or ordinances, or to provide annual data. These interfaces are described in the sections that follow.

5.5.1 DOH

TEAAS will perform mileposting of ordinances for DOH.

5.5.2 DMV

The DMV Crash system may request that mileposting be performed on certain accidents. TEAAS will receive the accident information, perform mileposting, and return the milepost information to Crash. The request for Crash accident mileposting will be on demand.

Accidents can also be mileposted because of changes to feature or road data within TEAAS. In this case, the ChangeListener class identifies the accidents to be remileposted.

5.5.3 HSRC

TEAAS will provide data in ASCII format for the federal multi-state Highway Safety Information System (HSIS) database of HSRC. The ASCII file(s) will contain all the reportable, mileposted accidents. The ASCII file(s) will be placed on a network location accessible by HSRC via file transfer protocol (FTP).

This requirement will be accommodated as an operational process.

5.6 Auditing and Archiving

TEAAS does not have requirements for providing archiving or auditing of the operations performed by the application. TEAAS will provide auditing information only for modifiable data; any deleted information will not be represented. The user identification and the date-timestamp information are stored for the changes performed for the last instance only.

5.7 Roles and Functions

The following table shows the various roles that have been defined for users of TEAAS. Each user role is associated with one or more defined functions. Each user can have one or more roles assigned to them. User roles and functions will be stored in tables within the TEAAS database, and business rules will be employed to enforce the system’s security requirements.

[image: image55.wmf]Intersection

intersectingRouteID : String

intersectionTypeCode : char

intersectingRouteMilepostNum : float

nextFeatureDirectionCode : char

loopConditionInd : char

outsideCountyInd : char

reMilepostReqdInd : char

Intersection ()

modifyIntersection ()

MileMarker

mileageNumber :

int

nextFeatureDirectionCode : char

outsideCountyInd : char

reMilepostReqdInd : char

MileMarker ()

modifyMileMarker ()

RailroadCrossing

railroadCrossingID : String

RailroadCrossing ()

modifyRRCrossing ()

PoliticalBoundary

boundaryID : String

nextFeatureDirectionCode : char

loopConditionInd : char

reMilepostReqdInd : char

PoliticalBoundary ()

modifyPoliticalBoundary ()

Structure

structureID : String

structureTypeCode : String

Structure ()

modifyStructure ()

Audit

userID : String

timestamp : String

Audit ()

getUser () : String

setUser (

userID : String) :

boolean

getDate () : String

setDate (timestamp : String) :

boolean

Report

identifyMunicipalityExceptions () :

int

identifyRoadExceptions () :

int

1

*

HighestOrderSegment

segmentMilepostBeginNum : float

segmentMilepostEndNum : float

initialSegmentInd : char

HORouteID

 : String

HORMilepostBeginNum

 : float

HORMilepostEndNum

 : float

inventoryDirectionCode : char

milepostDeltaQuantity : float

reMilepostReqdInd : char

HighestOrderSegment ()

modifyHighestOrderSegment ()

1

InventoriedRoute

countyNum :

int

inventoriedRouteID : String

milepostBeginNum : float

milepostEndNum : float

reMilepostReqdInd : char

InventoriedRoute (

routeID

 : String)

modifyInventoriedRoute ()

isInventoriedRoute () :

boolean

findRouteFeature (

featureID : String)

getHighestOrderSegment (

mpRoute : String, ...)

*

Feature

milepostNum : float

Feature ()

identifyFeatureType ()

SecondaryRoute

countyNum :

int

roadCode : String

alternateRoadDescription : String

SecondaryRoute ()

modifySecondaryRoute ()

5.8 Special Modules

A special wrapper class will be written to handle the detailed Application Program Interface (API) of the reporting tool. The individual report classes in TEAAS will use the simpler API provided by the wrapper class.

5.9 Object/Database Interaction Matrix

The CRUD matrix shows the interaction between the classes and the database tables. The definition of the attributes in the table are listed:

· C = Create

The process may add a record to the data store.

· R = Read

The process may retrieve data from the data store.

· U = Update
The process may modify data in an existing record.

· D = Delete

The process may permanently delete a record from the data store.

The following table depicts the CRUD matrix. The GUI classes are not listed in the table, since they do not interact directly with the database tables, nor are the data access or report writer-related classes for reasons stated prior. This CRUD matrix is intended only to be representative of which classes can perform what processes to which database tables. In reality, although not depicted here, only the data access classes and the report-writing classes will interact with database tables.

[image: image47.wmf]InventoriedRoute

CRUD

HighestOrderSegment

CRUD

Structure

CRUD

Intersection

CRUD

MileMarker

CRUD

RailroadCrossing

CRUD

PoliticalBoundary

CRUD

Ordinance

RU

ChangeListener

R

R

R

R

R

R

RU

Accident

R

Location

RU

FeatureName

CRUD

State

R

County

R

Municipality

R

SecondaryRoute

CRUD

Lookup

R

Error

C

R

User

CRUD

CRUD

Role

R

R

Function

R

Report

R

Matrix of Database Actions Allowed by Each Object

Database

Tables

Classes

6 distributed system architecture

The objective of this section is to distribute the individual data tables, defined in the Physical Data Model section, and classes, identified in the Class Model and Physical System Architecture sections, to appropriate client and server nodes of the technical environment.

TEAAS uses a component-based application architecture, where the application is comprised of components that communicate with each other through the use of middleware. For more information regarding the technical architecture aspects of TEAAS, refer to the TEAAS Technical Architecture Document.

The client/server distribution strategy for TEAAS is based on component classification. The components in TEAAS can broadly be classified into three categories: GUI components, business rule components, and data access components. Each component will correspond to a physical class. All the GUI components will reside on client workstations; business rule and data access components will reside on the server. Database tables will also reside on the server.

6.1 Class Distribution

A mapping table for all the Java classes identified in the Class Model and Physical System Architecture sections is provided below. As stated prior, the data access classes have not yet been modeled, hence those classes do not appear in the table below. It can be assumed, however, that the data access classes will be on the server. Similarly, the report-writing classes have not yet been modeled, but can be assumed to be on the client.

The following abbreviations are used in the table that follows.

BR
- Business Rule

GUI
- Graphical User Interface

C

- Client

S

- Server

Distribution of Physical System Architecture

Class
Component Type
Client or Server

Accident
BR
S

AccidentAI
BR
S

Audit
BR
S

ChangeListener
BR
S

County
BR
S

InventoriedRoute
BR
S

InventoriedRouteUI
GUI
C

Encoder
BR
S

Error
BR
S

ErrorUI
GUI
C

Feature
BR
S

Function
BR
S

HighestOrderSegment
BR
S

HighestOrderSegmentUI
GUI
C

Intersection
BR
S

IntersectionUI
GUI
C

Location
BR
S

LogonUI
GUI
C

Lookup
BR
S

MenuBuilderUI
GUI
C

MileMarker
BR
S

MileMarkerUI
GUI
C

Municipality
BR
S

MunicipalityUI
GUI
C

Ordinance
BR
S

PoliticalBoundary
BR
S

PoliticalBoundaryUI
GUI
C

RailroadCrossing
BR
S

RailroadCrossingUI
GUI
C

Report
BR
C

FeatureName
BR
S

FeatureNameUI
GUI
C

SecondaryRoute
BR
S

SecondaryRouteUI
GUI
C

Role
BR
S

StartupUI
GUI
C

State
BR
S

Structure
BR
S

StructureUI
GUI
C

User
BR
S

UserManagerUI
GUI
C

6.2 Table Distribution

All of the TEAAS Oracle database tables will reside on the server.

6.3 Distributed Data Architecture

The data for the TEAAS application comes from two databases: the TEAAS Oracle database and the Crash Oracle database. The TEAAS database contains GIS data and will use accident data from Crash. The GIS data will be stored within the TEAAS database on the database server.

7 physical data model

The physical data model identifies the data structures required to support the application. It identifies the physical data tables and column names derived from the logical data model, the data structures required to support interfaces with existing systems, and any additional tables required to support the application, including user access and error logs. This section also identifies the table indexes the application will use. Additional indexes may be required to optimize performance.

The conventions used in the physical data model are somewhat different than those used in the logical model, and are described here to aid in interpreting the diagram.

Convention
Description

[image: image56.wmf]1

Ordinance

countyNum :

int

ordinanceTypeCode : String

ordinanceNum : String

beginReferenceUnit : String

endReferenceUnit : String

segmentLength : float

Ordinance ()

milepostOrdinance () :

boolean

convertUnit (

inValue : float,

valueType : String) : float

2

Encoder

textDescription : String

code : String

Encoder ()

encode (

textDescription : String) : String

identifyTextDescription (

textDescription : String) : String

InventoriedRoute

countyNum :

int

inventoriedRouteID : String

milepostBeginNum : float

milepostEndNum : float

reMilepostReqdInd : char

InventoriedRoute (

routeID

 : String)

modifyInventoriedRoute ()

isInventoriedRoute () :

boolean

findRouteFeature (

featureID : String)

getHighestOrderSegment (

mpRoute : String, ...)

1

1

Location

onRoad : String

referenceFeature : String

towardFeature : String

distanceFromReferenceFeature : float

directionFromReferenceFeature : String

directionToTowardFeature : String

milepostRoute : String

milepostNumber : float

milepostQualityInd : char

coincidingRouteInd : char

rampOrServiceRoad :

boolean

HOMilepostRoute

 : String

HOMilepostNum

 : float

Location ()

setLocation (

onRoad : String, ...) : Location

getLocation (

loc : Location,

onRoad : String, ...) :

boolean

milepost (

loc : Location,

onRoad : String, ...) :

boolean

encodeLocations () :

boolean

encode

isInventoriedRoute,

findRouteFeature,

getHighestOrderSegment

1

Accident

accidentID : String

Accident ()

milepostAccident () :

boolean

1

Feature

milepostNum : float

Feature ()

identifyFeatureType ()

ChangeListener

notifyChange (

chg : String, type : String)

notifyChange

FeatureName

featureCode : String

featureDescription : String

featurePreferredTextInd : char

reMilepostReqdInd : char

FeatureName ()

encode (

textDescription : String) : String

modifyFeatureName () :

boolean

Arrows represent relationships between tables, and point toward the parent table.

[1,n]

Cardinality describes the number of child records a parent record can have. In this model it is represented by values in square brackets, located on the relationship arrow. Cardinality is read as “the parent has 1 to n child records.” In this example the parent must have at least one child record.

Entity Relationship Diagram

[image: image57.wmf]Error

errorCode : String

errorMessage : String

errorTypeCode : char

errorActionCode : char

errorParamValue : String

traceFileLocation : String

Error (

errorCode : String)

display () :

boolean

updateLog (

traceFileName : String) : void

Lookup

fieldCode : String

valueCode : String

fieldText : String

valueText : String

tableGroupText : String

Lookup (fieldCode : String)

getValueCodes () : String

getValueCode (text : String) : String

getAllValueText () : String

getValueText (fieldCode : String) : String

getAll () : Enumeration

State

stateCode : String

stateDescription : String

State ()

encode (textDescription : String) : String

FeatureName

featureCode : String

featureDescription : String

featurePreferredTextInd : char

reMilepostReqdInd : char

FeatureName ()

encode (textDescription : String) : String

modifyFeatureName () : boolean

Encoder

textDescription : String

code : String

Encoder ()

encode (textDescription : String) : String

identifyTextDescription (textDescription : String) : String

encode

1

County

countyNum : int

countyDescription : String

County ()

encode (textDescription : String) : String

*

Municipality

municipalityCode : String

municipalityDescription : String

Municipality ()

encode (textDescription : String) : String

1

User

userID : String

password : String

firstName : String

middleName : String

lastName : String

phoneNumber : String

User ()

modifyUser ()

setPassword ()

modifyRoles ()

*

1

Role

roleID : String

roleText : String

Role ()

getFunctions () : String

*

Function

functionID : String

functionText : String

parentFunctionID : String

GUIClassName : String

Function ()

getParentFunctionID () : String

 [image: image48.wmf] [0,n]

 [1,n]

 [1,n]

 [0,n]

 [0,n]

 [0,n]

 [0,n]

 [0,n]

 [0,n]

 [1,n]

 [0,n]

 [1,n]

 [1,n]

 [1,n]

 [1,n]

 [0,n]

 [0,n]

 [1,n]

 [1,n]

 [1,n]

 [1,2]

 [0,n]

 [0,n]

 [0,n]

 [0,n]

 [0,n]

 [0,n]

FTV_INVD_ROUTE

FTV_HO_SEGMENT

MVC_CITY_POPULATION

FTV_FEATURE_NAME

FTV_CHARACTERISTIC

FTV_STRUCTURE

FTV_INTERSECTION

FTV_BOUNDARY

FTV_RAILROAD_CROSSING

FTV_MILE_MARKER

FTV_DRCTNL_CHARACTERISTIC

MVC_COUNTY

FTV_ERROR_CODE

FTV_ERROR_LOG

FTV_USER

FTV_USER_ROLE

FTV_ROLE

FTV_ROLE_FUNCTION

FTV_FUNCTION

FTV_ORDINANCE

FTV_MASTER_LOOKUP

FTV_SCNDRY_ROUTE

FTV_USER_REPORT

FTV_INTERSECTION_ROAD

FTV_STRIP_ROAD

FTV_ACCIDENT_ADJUSTMENT

FTV_FEATURE_INCLUSION

MVC_COUNTY_CODE

MVC_COUNTY_REFERENCE

Crash Tables

Each of the relationships identified in the model is described below.

County and Inventoried Route

· Each County must have one or more Inventoried Route.

· Each Inventoried Route record must be identified by one and only one County.

Inventoried Route and Highest Order Segment

· Each Inventoried Route must have one or more Highest Order Segment record.

· Each Highest Order Segment record must be identified to one and only one Inventoried Route.

Inventoried Route and Structure

· Each Inventoried Route may have one or more mileposted Structure.

· Each Structure record must be identified by one and only one Inventoried Route.

Inventoried Route and Intersection

· Each Inventoried Route may have one or more mileposted Intersection.

· Each Intersection record must belong to one and only one Inventoried Route.

Inventoried Route and Boundary

· Each Inventoried Route may cross one or more mileposted political Boundary.

· Each political Boundary record must be identified by one and only one Inventoried Route.

Inventoried Route and Mile Marker

· Each Inventoried Route may have one or more mileposted Mile Marker.

· Each Mile Marker record must be identified by one and only one Inventoried Route.

Inventoried Route and Railroad Crossing

· Each Inventoried Route may cross one or more mileposted Railroad Crossing.

· Each Railroad Crossing record must be identified by one and only one Inventoried Route.

Inventoried Route and Characteristic

· Each Inventoried Route may have one or more segment inventoried for Characteristics.

· Each Characteristic record must be identified to one and only one Inventoried Route.

Characteristic and Directional Characteristic

· Each Characteristic record must have one or two Directional Characteristic records.

· Each Directional Characteristic record must be identified to one and only one Characteristic record.

County and City Population

· Each County must have one or more City Population record.

· Each City Population record must be identified by one and only one County.

County and County Code

· Each County must be referenced by one or more County Code record.

· Each County Code record must reference one and only one County.

County Reference and County Code

· Each County Reference must be used by one or more County Code record.

· Each County Code record must use one and only one County Reference.

County and Ordinance

· Each County may have one or more Ordinance.

· Each Ordinance must reference one and only one County.

County and Secondary Route

· Each County must have one or more Secondary Route.

· Each Secondary Route record must reference one and only one County.

Error Code and Error Log

· Each Error Code may be used in one or more Error Log entry.

· Each Error Log entry must be identified by one and only one Error Code.

User and Error Log

· Each User may be identified in one or more Error Log entry.

· Each Error Log entry must be identified to one and only one User.

User and User Role

· Each User must have one or more User Role assignment.

· Each User Role assignment must reference one and only one User.

Role and User Role

· Each Role must be used in one or more User Role assignment.

· Each User Role assignment must reference one and only one Role.

Role and Role Function

· Each Role must have one or more Role Function assignment.

· Each Role Function assignment must reference one and only one Role.

Function and Role Function

· Each Function must be used in one or more Role Function assignment.

· Each Role Function assignment must reference one and only one Function.

Function and Function

· Each Function may have one or more subordinate Function.

· Each subordinate Function must have one and only one parent Function.

User and User Report

· Each User may create one or more User Report.

· Each User Report must reference one and only one User.

County and User Report

· Each County may be referenced in one or more User Report.

· Each User Report must reference one and only one County.

User Report and Strip Road

· Each User Report may include one or more Strip Road.

· Each Strip Road record must belong to one and only one User Report.

User Report and Intersection Road

· Each User Report may include one or more Intersection Road.

· Each Intersection Road record must belong to one and only one User Report.

User Report and Accident Adjustment

· Each User Report may require one or more Accident Adjustment.

· Each Accident Adjustment record must belong to one and only one User Report.

User Report and Feature Inclusion

· Each User Report may require one or more Feature Inclusion.

· Each Feature Inclusion record must belong to one and only one User Report.

Note: Structures, intersections, boundaries, mile markers, and railroad crossings are all inventoried features. As described above, an Inventoried Route may have one or more of each of these features. Additionally, an Inventoried Route must have one or more of any of these features. In other words, an Inventoried Route record cannot be created without also creating at least one feature record.

7.1 Table Descriptions

The following sections describe each physical table, identify column definitions and business rules are presented, and table indexes are identified. Conventions are identified here to assist in interpreting the descriptions.

Table descriptions are presented in the following format:

Column Name
Logical Name
Datatype
PK
FK
Req’d

CNTY_CD
County Code
CHAR(2)
X
X
X

The column headed PK identifies columns that are part of the primary key. FK identifies columns that have a foreign key reference (a relationship to another table). Req’d identifies columns which must contain a value (cannot be NULL).

Following the table description are the column definitions listed in the order they appear in the table. Where appropriate, business rules are included with the column definitions. The business rules identified are used to assure data integrity for initial conversion and load, and for user maintenance of data. Business rules are not enforced by the database. They are enforced through application logic or operational control. They are presented here for review and approval.

Table indexes are identified in the following format:

Index Code
P
F
U
Column Code
Sort

COUNTY_ROUTE_PK_IDX
X

X
CNTY_CD
INVD_RTE_ID
MLPST_BGN_NBR
ASC
ASC
ASC

The column headed P identifies indexes created from Primary Key columns. F identifies indexes created from Foreign Key columns. U identifies unique indexes.

Certain Crash tables are represented in the model and are described here for reference only. These tables will not be created by the TEAAS project, but will be referenced by TEAAS once created by Crash.

7.1.1 MVC_COUNTY Table

The County table from the Crash database contains the master list of North Carolina counties, and is used primarily as a validation table.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

CNTY_NBR
County Number
NUMBER(3)
X

X

CNTY_NM
County Name
VARCHAR2(25)

LST_UPDT_USER_ID
Last Update User Identifier
VARCHAR2(8)

LST_UPDT_TS
Last Update Timestamp
DATE

Column Definitions

Column Name
Column Definition
Business Rules

CNTY_NBR
The code value that represents a county in North Carolina.

CNTY_NM
The text name of a North Carolina county.

LST_UPDT_USER_ID
User who created or last updated the record.

LST_UPDT_TS
Date and time of record creation or last update.

7.1.2 MVC_COUNTY_REFERENCE Table

The County Reference table from the Crash database contains the master list of geographical areas into which North Carolina counties may be divided.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

RFRNC_NBR
Reference Number
NUMBER(2)
X

X

RFRNC_CD
Reference Code
VARCHAR2(2)
X

X

RFRNC_NM
Reference Name
VARCHAR2(25)

RFRNC_DES
Reference Description
VARCHAR2(100)

LST_UPDT_USER_ID
Last Update User Identifier
VARCHAR2(8)

LST_UPDT_TS
Last Update Timestamp
DATE

Column Definitions

Column Name
Column Definition
Business Rules

RFRNC_NBR
Uniquely identifies a category of geographic division.

RFRNC_CD
Uniquely identifies a specific geographic division within a category.

RFRNC_NM
Describes the category of geographic division.

RFRNC_DES
Describes the specific geographic division within a category.

LST_UPDT_USER_ID
User who created or last updated the record.

LST_UPDT_TS
Date and time of record creation or last update.

7.1.3 MVC_COUNTY_CODE Table

The County Code table from the Crash database associates North Carolina counties with the geographical areas into which they may be divided.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

CNTY_NBR
County Number
NUMBER(3)
X
X
X

RFRNC_NBR
Reference Number
NUMBER(2)
X
X
X

RFRNC_CD
Reference Code
VARCHAR2(2)
X
X
X

LST_UPDT_USER_ID
Last Update User Identifier
VARCHAR2(8)

X

LST_UPDT_TS
Last Update Timestamp
DATE

X

Column Definitions

Column Name
Column Definition
Business Rules

CNTY_NBR
The code value that represents a county in North Carolina.

RFRNC_NBR
Uniquely identifies a category of geographic division.

RFRNC_CD
Uniquely identifies a specific geographic division within a category.

LST_UPDT_USER_ID
User who created or last updated the record.

LST_UPDT_TS
Date and time of record creation or last update.

7.1.4 MVC_CITY_POPULATION Table

The City Population table from the Crash database contains a list of incorporated and unincorporated North Carolina municipalities, and is used primarily as a validation table. The Traffic Code column on the table identifies the incorporated municipalities used in the TEAAS application.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

CNTY_NBR
County Number
NUMBER(3)
X
X
X

CITY_CD
City Code
NUMBER(6)
X

X

TRFC_CD
Traffic Code
NUMBER(2)

CITY_ADR
City Address
VARCHAR2(22)

PPLTN_CNT
Population Count
NUMBER(7)

DSTRCT_CD
District Code
VARCHAR2(1)

LST_UPDT_USER_ID
Last Update User Identifier
VARCHAR2(8)

LST_UPDT_TS
Last Update Timestamp
DATE

Column Definitions

Column Name
Column Definition
Business Rules

CNTY_NBR
The code for the county in which the municipality is located.

CITY_CD
The code that represents an incorporated or unincorporated place within a North Carolina county.

TRFC_CD
The code representing an incorporated municipality within a North Carolina county.

CITY_ADR
The spelling of a municipality.

PPLTN_CNT
The population of the municipality.

DSTRCT_CD
The district in which the municipality is located.

LST_UPDT_USER_ID
User who created or last updated the record.

LST_UPDT_TS
Date and time of record creation or last update.

7.1.5 FTV_INVD_ROUTE Table

The Inventoried Route table contains the master list of inventoried routes within each county. If the physical roadway is shared by two or more numbered routes, a record is maintained for each route.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

CNTY_NBR
County Number
NUMBER(3)
X
X
X

INVD_RTE_ID
Inventoried Route Identifier
CHAR(8)
X

X

MLPST_BGN_NBR
Milepost Begin Number
NUMBER(6,3)
X

X

MLPST_END_NBR
Milepost End Number
NUMBER(6,3)

X

REMLPST_RQRD_IND
Remilepost Required Indicator
CHAR(1)

X

LST_UPDT_TS
Last Update Timestamp
DATE

X

LST_UPDT_USER_ID
Last Update User Identifier
VARCHAR2(20)

X

Column Definitions

Column Name
Column Definition
Business Rules

CNTY_NBR
The code for the county in which the inventoried route is located.

INVD_RTE_ID
The eight-digit code that identifies the route. The code intelligence also identifies the route type, special route, couplet direction, and route number.
Inventoried route may not be altered by the user. It must be created from route type || special route || couplet direction || route number.

Route type is validated by valid values.

Special route is validated by valid values.

Couplet direction is validated by valid values.

Route number is numeric only, taken as input from the user and left padded to 5 characters.

MLPST_BGN_NBR
The beginning location of the inventoried route. The lowest milepost for the inventoried route.
When the same street name within a county results in a duplicate value of county code || inventoried route, the beginning milepost is incremented for each subsequent route.

Beginning milepost must be < ending milepost.

MLPST_END_NBR
The ending location of the inventoried route, measured to the nearest thousandth of a mile from the beginning of the route. The highest milepost value for the inventoried route.
Ending milepost must be > beginning milepost.

REMLPST_RQRD_IND
Indicates the record is either new or has been changed in such a way that remileposting should be performed.
The value must be either 'Y' or 'N'.

Default value for new inventoried route records is 'Y'.

For existing records, the value is set to 'Y' if milepost end number is updated.

LST_UPDT_TS
Date and time of record creation or last update.

LST_UPDT_USER_ID
User who created or last updated the record.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_INVD_ROUTE
X

X
CNTY_NBR
INVD_RTE_ID
MLPST_BGN_NBR
ASC
ASC
ASC

FTV_INVD_ROUTE_FK1_IDX

X

CNTY_NBR
ASC

7.1.6 FTV_HO_SEGMENT Table

The Highest Order Segment table contains a cross-reference of the inventoried route to the highest order route.

The physical roadway can be shared by two or more routes. When this occurs, the shared segment of road is known as a coinciding segment. Each record in the table represents a segment of the inventoried route and identifies the highest order route for the segment. A new record is created when the highest order route for the segment is different than for the previous segment.

Accidents are mileposted to the highest order route. Once the milepost location is known for the inventoried route, the mileposting process will reference this table to identify the highest order route that corresponds with that location. The milepost value will be calculated for the highest order route as described in the definition for MLPST_DLTA_QTY. The eight-digit code for the highest order route and the corresponding milepost value are stored on the accident record.

Likewise, queries for accidents on an inventoried route will reference this table to identify the highest order route for the segment under study. Accidents mileposted to the highest order route for the segment will be returned.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

CNTY_NBR
County Number
NUMBER(3)
X
X
X

INVD_RTE_ID
Inventoried Route Identifier
CHAR(8)
X
X
X

MLPST_BGN_NBR
Milepost Begin Number
NUMBER(6,3)
X
X
X

SGMT_MLPST_BGN_NBR
Segment Milepost Begin Number
NUMBER(6,3)
X

X

SGMT_MLPST_END_NBR
Segment Milepost End Number
NUMBER(6,3)

X

INTL_SGMT_IND
Initial Segment Indicator
CHAR(1)

X

HOR_ID
High Order Route Identifier
CHAR(8)

X

HOR_MLPST_BGN_NBR
High Order Route Milepost Begin Number
NUMBER(6,3)

X

HOR_MLPST_END_NBR
High Order Route Milepost End Number
NUMBER(6,3)

X

INV_DRCTN_CD
Inventory Direction Code
CHAR(1)

X

MLPST_DLTA_QTY
Milepost Delta Quantity
NUMBER(6,3)

X

REMLPST_RQRD_IND
Remilepost Required Indicator
CHAR(1)

X

LST_UPDT_TS
Last Update Timestamp
DATE

X

LST_UPDT_USER_ID
Last Update User Identifier
VARCHAR2(20)

X

Column Definitions

Column Name
Column Definition
Business Rules

CNTY_NBR
The code for the county in which the inventoried route is located.

INVD_RTE_ID
The eight-digit code that identifies the route. The code intelligence also identifies the route type, special route, couplet direction, and route number.

MLPST_BGN_NBR
The beginning location of the inventoried route. The lowest milepost for the inventoried route.

SGMT_MLPST_BGN_NBR
The beginning location of the segment, measured to the nearest thousandth of a mile from the beginning of the inventoried route.
Segment beginning milepost must be < segment ending milepost.

Segment beginning milepost must be >= beginning milepost of its parent route AND < ending milepost of its parent route.

There may not be overlaps in segments for a parent route.

SGMT_MLPST_END_NBR
The ending location of the segment, measured to the nearest thousandth of a mile from the beginning of the inventoried route.
Segment ending milepost must be > segment beginning milepost.

Segment ending milepost must be > beginning milepost of its parent route AND <= ending milepost of its parent route.

There may not be overlaps in segments for a parent route.

INTL_SGMT_IND
Identifies whether this segment is the first (lowest milepost) of the inventoried route.
Only one Highest Order Segment record can be the initial segment of an inventoried route.

The value must be either 'Y' or 'N'.

Default is 'N'.

HOR_ID
The highest order route of all that coincide on this particular segment of the inventoried route.
Highest order route must be a valid route in the Inventoried Route table.

HOR_MLPST_BGN_NBR
The segment beginning milepost value of the highest order route for the segment. The milepost value is measured to the nearest thousandth of a mile from the beginning of the highest order route.
Segment beginning milepost must be < segment ending milepost.

Segment beginning milepost must be >= beginning milepost of its parent route AND < ending milepost of its parent route.

HOR_MLPST_END_NBR
The segment ending milepost value of the highest order route for the segment. The milepost value is measured to the nearest thousandth of a mile from the beginning of the highest order route.
Segment ending milepost must be > segment beginning milepost.

Segment ending milepost must be > beginning milepost of its parent route AND <= ending milepost of its parent route.

INV_DRCTN_CD
Indicates whether this route is inventoried in the same or reverse direction from the highest order route of this particular coinciding segment.
If inventoried route = highest order route, then inventory direction = 'S' (same).

The value must be either 'S' (same) or 'R' (reverse).

MLPST_DLTA_QTY
The value used to determine the milepost on the highest order route when the milepost on the lower order route is known.
Milepost delta may not be altered by the user. It must be derived using the following rules:

If inventory direction = 'S' (same), milepost delta = highest order route beginning milepost minus segment beginning milepost.

If inventory direction = 'R' (reverse), milepost delta = highest order route beginning milepost + segment ending milepost.

When using milepost delta to determine the milepost on the highest order route,

If inventory direction = 'S' (same), high order milepost = low order milepost + milepost delta.

If inventory direction = 'R' (reverse), high order milepost = milepost delta minus low order milepost.

REMLPST_RQRD_IND
Indicates the record is either new or has been changed in such a way that remileposting should be performed.
The value must be either 'Y' or 'N'.

Default value for highest order segment records is 'Y'.

For existing records, the value is set to 'Y' if segment milepost end number, highest order route ID, highest order route milepost begin number, highest order route milepost end number, inventory direction, or milepost delta is updated.

LST_UPDT_TS
Date and time of record creation or last update.

LST_UPDT_USER_ID
User who created or last updated the record.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_HO_SEGMENT
X

X
CNTY_NBR
INVD_RTE_ID
MLPST_BGN_NBR
SGMT_MLPST_BGN_NBR
ASC
ASC
ASC
ASC

FTV_HO_SEGMENT_FK1_IDX

X

CNTY_NBR
INVD_RTE_ID
MLPST_BGN_NBR
ASC
ASC
ASC

7.1.7 FTV_INTERSECTION Table

The Intersection table identifies the milepost location for routes that cross the inventoried route. If the intersection is located on a segment of physical roadway shared by two or more routes, an intersection record is maintained for each route.

Intersection locations are used by the mileposting process to help identify the milepost location of an accident or ordinance.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

CNTY_NBR
County Number
NUMBER(3)
X
X
X

INVD_RTE_ID
Inventoried Route Identifier
CHAR(8)
X
X
X

MLPST_BGN_NBR
Milepost Begin Number
NUMBER(6,3)
X
X
X

INTRSCTG_RTE_ID
Intersecting Route Identifier
CHAR(8)
X

X

INTRSCTN_MLPST_NBR
Intersection Milepost Number
NUMBER(6,3)
X

X

INTRSCTN_TYP_CD
Intersection Type Code
CHAR(1)

X

INTRSCTG_RTE_MLPST_NBR
Intersecting Route Milepost Number
NUMBER(6,3)

NXT_FTR_DRCTN_CD
Next Feature Direction Code
CHAR(1)

X

LOOP_CNDTN_IND
Loop Condition Indicator
CHAR(1)

X

OTSD_CNTY_IND
Outside County Indicator
CHAR(1)

X

REMLPST_RQRD_IND
Remilepost Required Indicator
CHAR(1)

X

LST_UPDT_TS
Last Update Timestamp
DATE

X

LST_UPDT_USER_ID
Last Update User Identifier
VARCHAR2(20)

X

Column Definitions

Column Name
Column Definition
Business Rules

CNTY_NBR
The code for the county in which the inventoried route is located.

INVD_RTE_ID
The eight-digit code that identifies the route. The code intelligence also identifies the route type, special route, couplet direction, and route number.

MLPST_BGN_NBR
The beginning location of the inventoried route. The lowest milepost for the inventoried route.

INTRSCTG_RTE_ID
The eight-digit roadway code for the route intersecting the inventoried route.
The intersecting route does not have to be a valid route in the Inventoried Route table.

However, intersecting route ID should be validated as though it were composed of route type || special route || couplet direction || route number.

Must be digits only.

INTRSCTN_MLPST_NBR
Location of intersection on the inventoried route, measured to the nearest thousandth of a mile from the inventoried route beginning milepost.
Must be a value >= beginning milepost AND <= ending milepost on the parent route, except when the feature is located outside the county.

INTRSCTN_TYP_CD
The kind of intersection (e.g., at grade, interchange) and the number of approach roads (legs) constituting the intersection.
Validated by valid values.

INTRSCTG_RTE_MLPST_NBR
Location of intersection, measured to the nearest thousandth of a mile from the beginning milepost of the intersecting route.
If the intersecting route is not an inventoried route, the milepost value will be NULL.

If the intersecting route is an inventoried route, the milepost value must be >= the beginning milepost of its parent route AND <= the ending milepost of its parent route.

NXT_FTR_DRCTN_CD
The geographic direction to the next intersection, political boundary, or mile marker on the inventoried route, traveling along the route in increasing order of milepost value.
Validated by valid values.

LOOP_CNDTN_IND
Indicates whether the intersecting road or political boundary crosses the inventoried route again in another place.
The value must be either 'Y' or 'N'.

Default is 'N'.

If the same route or political boundary crosses the inventoried route more than once, loop condition = 'Y'.

OTSD_CNTY_IND
Indicates whether the feature is located outside the limits of the county.
The value must be either 'Y' or 'N'.

Default is 'N'.

REMLPST_RQRD_IND
Indicates the record is either new or has been changed in such a way that remileposting should be performed.
The value must be either 'Y' or 'N'.

Default value for new intersection records is 'Y'.

For existing records, the value is set to 'Y' if intersecting route identifier or intersection milepost number is updated.

LST_UPDT_TS
Date and time of record creation or last update.

LST_UPDT_USER_ID
User who created or last updated the record.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_INTERSECTION
X

X
CNTY_NBR
INVD_RTE_ID
MLPST_BGN_NBR
INTRSCTG_RTE_ID
INTRSCTN_MLPST_NBR
ASC
ASC
ASC
ASC
ASC

FTV_INTERSECTION_FK1_IDX

X

CNTY_NBR
INVD_RTE_ID
MLPST_BGN_NBR
ASC
ASC
ASC

7.1.8 FTV_MILE_MARKER Table

The Mile Marker table identifies the milepost location of mile markers that occur on the inventoried route. If the mile marker is located on a segment of physical roadway shared by two or more routes, a mile marker record is maintained for each route.

Mile Marker locations are used by the mileposting process to help identify the milepost location of accidents.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

CNTY_NBR
County Number
NUMBER(3)
X
X
X

INVD_RTE_ID
Inventoried Route Identifier
CHAR(8)
X
X
X

MLPST_BGN_NBR
Milepost Begin Number
NUMBER(6,3)
X
X
X

MLG_NBR
Mileage Number
NUMBER(4)
X

X

MILE_MRKR_MLPST_NBR
Mile Marker Milepost Number
NUMBER(6,3)

X

NXT_FTR_DRCTN_CD
Next Feature Direction Code
CHAR(1)

X

OTSD_CNTY_IND
Outside County Indicator
CHAR(1)

X

REMLPST_RQRD_IND
Remilepost Required Indicator
CHAR(1)

X

LST_UPDT_TS
Last Update Timestamp
DATE

X

LST_UPDT_USER_ID
Last Update User Identifier
VARCHAR2(20)

X

Column Definitions

Column Name
Column Definition
Business Rules

CNTY_NBR
The code for the county in which the inventoried route is located.

INVD_RTE_ID
The eight-digit code that identifies the route. The code intelligence also identifies the route type, special route, couplet direction, and route number.

MLPST_BGN_NBR
The beginning location of the inventoried route. The lowest milepost for the inventoried route.

MLG_NBR
The mileage value as recorded on the mile marker.

MILE_MRKR_MLPST_NBR
Location of mile marker on the inventoried route, measured to the nearest thousandth of a mile from the beginning of the route.
Must be a value >= beginning milepost AND <= ending milepost on the parent route, except when the feature is located outside the county.

NXT_FTR_DRCTN_CD
The direction to the next intersection, political boundary, or mile marker on the inventoried route, traveling along the route in increasing order of milepost value.
Validated by valid values.

OTSD_CNTY_IND
Indicates whether the feature is located outside the limits of the county.
The value must be either 'Y' or 'N'.

Default is 'N'.

REMLPST_RQRD_IND
Indicates the record is either new or has been changed in such a way that remileposting should be performed.
The value must be either 'Y' or 'N'.

Default value for new mile marker records is 'Y'.

For existing records, the value is set to 'Y' if mileage number or mile marker milepost number is updated.

LST_UPDT_TS
Date and time of record creation or last update.

LST_UPDT_USER_ID
User who created or last updated the record.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_MILE_MARKER
X

X
CNTY_NBR
INVD_RTE_ID
MLPST_BGN_NBR
MLG_NBR
ASC
ASC
ASC
ASC

FTV_MILE_MARKER_FK1_IDX

X

CNTY_NBR
INVD_RTE_ID
MLPST_BGN_NBR
ASC
ASC
ASC

7.1.9 FTV_BOUNDARY Table

The Boundary table identifies the milepost location of political boundaries that cross the inventoried route. If the political boundary is located on a segment of physical roadway shared by two or more routes, a political boundary record is maintained for each route.

Political boundary location is used by the mileposting process to help identify the milepost location of accidents.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

CNTY_NBR
County Number
NUMBER(3)
X
X
X

INVD_RTE_ID
Inventoried Route Identifier
CHAR(8)
X
X
X

MLPST_BGN_NBR
Milepost Begin Number
NUMBER(6,3)
X
X
X

BNDRY_ID
Boundary Identifier
CHAR(8)
X

X

BNDRY_MLPST_NBR
Boundary Milepost Number
NUMBER(6,3)
X

X

NXT_FTR_DRCTN_CD
Next Feature Direction Code
CHAR(1)

X

LOOP_CNDTN_IND
Loop Condition Indicator
CHAR(1)

X

REMLPST_RQRD_IND
Remilepost Required Indicator
CHAR(1)

X

LST_UPDT_TS
Last Update Timestamp
DATE

X

LST_UPDT_USER_ID
Last Update User Identifier
VARCHAR2(20)

X

Column Definitions

Column Name
Column Definition
Business Rules

CNTY_NBR
The code for the county in which the inventoried route is located.

INVD_RTE_ID
The eight-digit code that identifies the route. The code intelligence also identifies the route type, special route, couplet direction, and route number.

MLPST_BGN_NBR
The beginning location of the inventoried route. The lowest milepost for the inventoried route.

BNDRY_ID
The eight-digit code that uniquely identifies the political boundary, including its type (state, county, or municipal).
If boundary is a county line, it must not be for the current county.

BNDRY_MLPST_NBR
Location of political boundary on the inventoried route, measured to the nearest thousandth of a mile from the beginning of the route.
Must be a value >= beginning milepost AND <= ending milepost on the parent route.

NXT_FTR_DRCTN_CD
The direction to the next intersection, political boundary, or mile marker on the inventoried route, traveling along the route in increasing order of milepost value.
Validated by valid values.

LOOP_CNDTN_IND
Indicates whether the intersecting road or political boundary crosses the inventoried route again in another place.
The value must be either 'Y' or 'N'.

Default is 'N'.

If the same route or political boundary crosses the inventoried route more than once, loop condition = 'Y'.

REMLPST_RQRD_IND
Indicates the record is either new or has been changed in such a way that remileposting should be performed.
The value must be either 'Y' or 'N'.

Default value for new boundary records is 'Y'.

For existing records, the value is set to 'Y' if boundary identifier or boundary milepost number is updated.

LST_UPDT_TS
Date and time of record creation or last update.

LST_UPDT_USER_ID
User who created or last updated the record.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_BOUNDARY
X

X
CNTY_NBR
INVD_RTE_ID
MLPST_BGN_NBR
BNDRY_ID
BNDRY_MLPST_NBR
ASC
ASC
ASC
ASC
ASC

FTV_BOUNDARY_FK1_IDX

X

CNTY_NBR
INVD_RTE_ID
MLPST_BGN_NBR
ASC
ASC
ASC

7.1.10 FTV_RAILROAD_CROSSING Table

The Railroad Crossing table identifies the milepost location of inventoried railroad crossings that occur on the inventoried route. If the railroad crossing is located on a segment of physical roadway shared by two or more routes, a railroad crossing record is maintained for each route.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

CNTY_NBR
County Number
NUMBER(3)
X
X
X

INVD_RTE_ID
Inventoried Route Identifier
CHAR(8)
X
X
X

MLPST_BGN_NBR
Milepost Begin Number
NUMBER(6,3)
X
X
X

RLRD_CRSG_ID
Railroad Crossing Identifier
CHAR(7)
X

X

RLRD_CRSG_MLPST_NBR
Railroad Crossing Milepost Number
NUMBER(6,3)

X

LST_UPDT_TS
Last Update Timestamp
DATE

X

LST_UPDT_USER_ID
Last Update User Identifier
VARCHAR2(20)

X

Column Definitions

Column Name
Column Definition
Business Rules

CNTY_NBR
The code for the county in which the inventoried route is located.

INVD_RTE_ID
The eight-digit code that identifies the route. The code intelligence also identifies the route type, special route, couplet direction, and route number.

MLPST_BGN_NBR
The beginning location of the inventoried route. The lowest milepost for the inventoried route.

RLRD_CRSG_ID
Unique code given to each railroad crossing.

RLRD_CRSG_MLPST_NBR
Location of railroad crossing on the inventoried route, measured to the nearest thousandth of a mile from the beginning of the route.
Must be a value >= beginning milepost AND <= ending milepost on the parent route.

LST_UPDT_TS
Date and time of record creation or last update.

LST_UPDT_USER_ID
User who created or last updated the record.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_RAILROAD_CROSSING
X

X
CNTY_NBR
INVD_RTE_ID
MLPST_BGN_NBR
RLRD_CRSG_ID
ASC
ASC
ASC
ASC

FTV_RAILROAD_CROSSING_FK1_IDX

X

CNTY_NBR
INVD_RTE_ID
MLPST_BGN_NBR
ASC
ASC
ASC

7.1.11 FTV_STRUCTURE Table

The Structure table identifies the milepost location of inventoried structures (e.g., bridges, culverts, overhead signs) that occur on the inventoried route. If the structure is located on a segment of physical roadway shared by two or more routes, a structure record is maintained for each route.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

CNTY_NBR
County Number
NUMBER(3)
X
X
X

INVD_RTE_ID
Inventoried Route Identifier
CHAR(8)
X
X
X

MLPST_BGN_NBR
Milepost Begin Number
NUMBER(6,3)
X
X
X

STRCTR_ID
Structure Identifier
CHAR(6)
X

X

STRCTR_TYP_CD
Structure Type Code
CHAR(3)

X

STRCTR_MLPST_NBR
Structure Milepost Number
NUMBER(6,3)

X

LST_UPDT_TS
Last Update Timestamp
DATE

X

LST_UPDT_USER_ID
Last Update User Identifier
VARCHAR2(20)

X

Column Definitions

Column Name
Column Definition
Business Rules

CNTY_NBR
The code for the county in which the inventoried route is located.

INVD_RTE_ID
The eight-digit code that identifies the route. The code intelligence also identifies the route type, special route, couplet direction, and route number.

MLPST_BGN_NBR
The beginning location of the inventoried route. The lowest milepost for the inventoried route.

STRCTR_ID
Unique number identifying each inventoried structure on an inventoried route, assigned by the Division of Highways.
The first two digits in the structure ID must identify the same county as the parent route.

Must be digits only.

STRCTR_TYP_CD
The kind of structure (e.g., culvert, bridge, tunnel, overhead sign).
Validated by valid values.

STRCTR_MLPST_NBR
Location of the structure on the inventoried route, measured to the nearest thousandth of a mile from the inventoried route beginning milepost.
Must be a value >= beginning milepost AND <= ending milepost on the parent route.

LST_UPDT_TS
Date and time of record creation or last update.

LST_UPDT_USER_ID
User who created or last updated the record.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_STRUCTURE
X

X
CNTY_NBR
INVD_RTE_ID
MLPST_BGN_NBR
STRCTR_ID
ASC
ASC
ASC
ASC

FTV_STRUCTURE_FK1_IDX

X

CNTY_NBR
INVD_RTE_ID
MLPST_BGN_NBR
ASC
ASC
ASC

7.1.12 FTV_CHARACTERISTIC Table

The Characteristic table stores the characteristics common to both directions of travel for each segment of the physical roadway. Records are maintained only for the highest order route for each segment.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

CNTY_NBR
County Number
NUMBER(3)
X
X
X

INVD_RTE_ID
Inventoried Route Identifier
CHAR(8)
X
X
X

MLPST_BGN_NBR
Milepost Begin Number
NUMBER(6,3)
X
X
X

CHARSTC_MLPST_BGN_NBR
Characteristics Milepost Begin Number
NUMBER(6,3)
X

X

REC_TYP_CD
Record Type Code
CHAR(1)

X

SGMT_LEN
Segment Length
NUMBER(6,3)

X

FTR_DATA_IND
Feature Data Indicator
CHAR(1)

X

STE_HWY_SYS_CD
State Highway System Code
CHAR(1)

X

NTNL_HWY_SYS_CD
National Highway System Code
CHAR(1)

X

FNCTNL_CD
Functional Code
CHAR(2)

X

SPCL_SYS_CD
Special Systems Code
CHAR(1)

X

MNCPLTY_CD
Municipality Code
NUMBER(2)

MDN_TYP_CD
Median Type Code
CHAR(1)

X

LFT_SHLDR_TYP_CD
Left Shoulder Type Code
CHAR(2)

LFT_SHLDR_WID
Left Shoulder Width
NUMBER(2)

RGT_SHLDR_TYP_CD
Right Shoulder Type Code
CHAR(2)

RGT_SHLDR_WID
Right Shoulder Width
NUMBER(2)

TOT_LANE_QTY
Total Lane Quantity
NUMBER(2)

TOT_SRFC_WID
Total Surface Width
NUMBER(3)

X

TOT_MDN_WID
Total Median Width
NUMBER(3)

TRCK_RTE_IND
Truck Route Indicator
CHAR(1)

X

Column Definitions

Column Name
Column Definition
Business Rules

CNTY_NBR
The code for the county in which the inventoried route is located.

INVD_RTE_ID
The eight-digit code that identifies the route. The code intelligence also identifies the route type, special route, couplet direction, and route number.

MLPST_BGN_NBR
The beginning location of the inventoried route. The lowest milepost for the inventoried route.

CHARSTC_MLPST_BGN_NBR
Beginning milepost for currently described segment, measured to the nearest thousandth of mile from the beginning of the inventoried route.
Segment beginning milepost must be >= beginning milepost of its parent route AND < ending milepost of its parent route.

REC_TYP_CD
Identifies whether directional characteristics are collected for both directions of travel combined, or separately for each direction of travel.
The value must be either 'C' (combined) or 'D' (directional).

If record type = 'C' (combined), there must be only one record in the Directional Characteristic table.

If record type = 'D' (directional), there must be two records in the Directional Characteristics table.

SGMT_LEN
Length of currently described section, measured to the nearest thousandth of a mile.
Beginning milepost + segment length cannot exceed the ending milepost of its parent route.

FTR_DATA_IND
Identifies whether feature data exists for this segment.
The value must be either 'Y' or 'N'.

STE_HWY_SYS_CD
Categorizes segments in the State High System, based on type of route and type of location (i.e., rural/municipal, primary/secondary/non-system).
Validated by valid values.

NTNL_HWY_SYS_CD
Categorizes segments as part of the National Highway System or one of its intermodal connectors.
Validated by valid values.

FNCTNL_CD
The primary function of the road segment.
Validated by valid values.

SPCL_SYS_CD
Categorizes special highway types that are part of the federal domain (e.g., the Blue Ridge Parkway, an Appalachian development highway, national park or national forest roads, Cherokee Indian Reservation roads).
Validated by valid values.

MNCPLTY_CD
The two-digit code, used in conjunction with the county code, to identify the incorporated municipality in which the segment is located.
The combination of county code (from the parent route) + municipality code must correctly identify this municipality (lookup against the City Population table).

MDN_TYP_CD
Describes the kind of median, if any.
Validated by valid values.

LFT_SHLDR_TYP_CD
The composition and width of the left shoulder. All references to "shoulder" mean the outside shoulder of the road, even on a divided highway. On a divided highway, the inside shoulders are considered part of the median.
If shoulder type is a curb, shoulder width is NULL.

If shoulder type is NOT a curb, shoulder width must be > 0.

Validated by valid values.

LFT_SHLDR_WID
Total usable shoulder width on the left in the direction of the inventory. All references to "shoulder" mean the outside shoulder of the road, even on a divided highway. On a divided highway, the inside shoulders are considered part of the median.
If shoulder type is a curb, shoulder width is NULL.

If shoulder type is NOT a curb, shoulder width must be > 0.

RGT_SHLDR_TYP_CD
The composition and width of the right shoulder. All references to "shoulder" mean the outside shoulder of the road, even on a divided highway. On a divided highway, the inside shoulders are considered part of the median.
If shoulder type is a curb, shoulder width is NULL.

If shoulder type is NOT a curb, shoulder width must be > 0.

If the section is a Highway Performance Monitoring System sample, information for the right shoulder type must be recorded.

Validated by valid values.

RGT_SHLDR_WID
Total usable shoulder width on the right in the direction of the inventory. All references to "shoulder" mean the outside shoulder of the road, even on a divided highway. On a divided highway, the inside shoulders are considered part of the median.
If shoulder type is a curb, shoulder width is NULL.

If shoulder type is NOT a curb, shoulder width must be > 0.

TOT_LANE_QTY
Total number of lanes in both directions of travel. If the inventory was taken for each direction of travel separately, the total of the two records is used.
Total lane quantity may not be altered by the user. It must be derived as the sum of Lane Quantity for child records in the Directional Characteristic table.

TOT_SRFC_WID
Travel lane width, not including median. If the inventory was taken for each direction of travel separately, the total of the two records is used.
Total surface width may not be edited by the user. It must be derived from the sum of Surface Width for child records in the Directional Characteristic table.

TOT_MDN_WID
Measurement from inside edgeline to inside edgeline of surface, including paved or unpaved median (inside) shoulder widths. If the inventory was taken for each direction of travel separately, the Median Width was recorded as one half the total. The two records are added together here to produce the total width.
Total median width may not be edited by the user. It must be derived from the sum of Median Width for child records in the Directional Characteristic table.

TRCK_RTE_IND
Identifies segments that are part of a federally approved designated truck route.
The value must be either 'Y' or 'N'.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_CHARACTERISTIC
X

X
CNTY_NBR
INVD_RTE_ID
MLPST_BGN_NBR
CHARSTC_MLPST_BGN_NBR
ASC
ASC
ASC
ASC

FTV_CHARACTERISTIC_FK1_IDX

X

CNTY_NBR
INVD_RTE_ID
MLPST_BGN_NBR
ASC
ASC
ASC

7.1.13 FTV_DRCTNL_CHARACTERISTIC Table

The Directional Characteristic table stores the segment characteristics which can differ for each direction of travel. When the characteristics do differ, each direction of travel is recorded separately; otherwise one record captures the characteristics for both directions of travel.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

CNTY_NBR
County Number
NUMBER(3)
X
X
X

INVD_RTE_ID
Inventoried Route Identifier
CHAR(8)
X
X
X

MLPST_BGN_NBR
Milepost Begin Number
NUMBER(6,3)
X
X
X

CHARSTC_MLPST_BGN_NBR
Characteristic Milepost Begin Number
NUMBER(6,3)
X
X
X

TRVL_DRCTN_CD
Travel Direction Code
CHAR(1)
X

X

SPD_LMT_RT
Speed Limit Rate
NUMBER(2)

X

ACS_CNTRL_CD
Access Control Code
CHAR(1)

X

ADTN_YR_DT
Addition Year Date
NUMBER(4)

IMPRVMT_YR_DT
Improvement Year Date
NUMBER(4)

IMPRVMT_TYP_CD
Improvement Type Code
CHAR(2)

SRFC_TYP_CD
Surface Type Code
CHAR(2)

X

LANE_QTY
Lane Quantity
NUMBER(2)

SRFC_WID
Surface Width
NUMBER(3)

X

MDN_WID
Median Width
NUMBER(3)

ADT_YR_DT
ADT Year Date
NUMBER(4)

ADT_CNT
ADT Count
NUMBER(6)

DSGN_HR_VLM_PCT
Design Hour Volume Percent
NUMBER(2)

TRCK_PCT
Truck Percent
NUMBER(2)

X

SMPL_SBDVSN_ID
Sample and Subdivision Identifier
VARCHAR2(6)

Column Definitions

Column Name
Column Definition
Business Rules

CNTY_NBR
The code for the county in which the inventoried route is located.

INVD_RTE_ID
The eight-digit code that identifies the route. The code intelligence also identifies the route type, special route, couplet direction, and route number.

MLPST_BGN_NBR
The beginning location of the inventoried route. The lowest milepost for the inventoried route.

CHARSTC_MLPST_BGN_NBR
Beginning milepost for currently described segment, measured to the nearest thousandth of mile from beginning of the inventoried route.

TRVL_DRCTN_CD
The direction of travel included in the inventory of directional characteristics.
Validated by valid values.

SPD_LMT_RT
The posted or legally mandated daytime speed limit for automobiles. If the speed limit varies over the length of the segment, the speed limit for the greater part of the segment is recorded.

ACS_CNTRL_CD
The type of access (other than through traffic) the public has to the roadway segment.
Validated by valid values.

ADTN_YR_DT
Year this segment was added to the State Highway System.
Years prior to 1930 are recorded as 1930.

IMPRVMT_YR_DT
The year during which the segment was last improved.
If year of improvement is NULL, then type of improvement is NULL.

IMPRVMT_TYP_CD
Specific categories of segment improvement, including reconstruction, resurfacing, widening, bridge rehabilitation, etc.
If year of improvement is NULL, then type of improvement is NULL.

Validated by valid values.

SRFC_TYP_CD
The type of material constituting the surface of the segment.
Validated by valid values.

LANE_QTY
The number of travel lanes provided by the surface width. May be the total for both directions or for only one direction, depending on the method of inventory. If lane usage changes during the day, peak hour usage prevails.
If State Highway System is '1', '2', '3', '4', '5', or '6', then Lane Quantity is NOT NULL.

When a section is a Highway Performance Monitoring System sample, Lane Quantity is NOT NULL.

SRFC_WID
The width of paved travel lanes, including turning lanes; or the surface width from ditch to ditch if the road is unpaved. This width may be for one direction of travel or the total for both directions depending on the method of inventory. For multi-lane undivided highways with turn lanes or mountable medians, recorded as edge to edge or face to face width. Does not include median width as a part of surface width if highway is divided.

MDN_WID
The measurement of the median from edgeline to edgeline, including paved or unpaved median (inside) shoulder widths. The total median width is recorded when the inventory is for both directions of travel. If each direction of travel is inventoried separately, one half of the median width is recorded for each direction. If the median width varies over the segment length, the width that is "most applicable" to the segment is recorded.
If the segment is a couplet, Median Width is NULL.

ADT_YR_DT
The year the average daily traffic (ADT) was recorded.
If State Highway System is '1', '2', '3', '4', '5', or '6', then ADT Year and ADT are NOT NULL.

When a section is a Highway Performance Monitoring System sample, ADT Year and ADT are NOT NULL.

ADT_CNT
Annual average daily traffic to the nearest vehicle. This figure is the weighted average for the section and when multiplied by the length will produce an average daily vehicle-mile traveled figure that is representative of the section.
If State Highway System is '1', '2', '3', '4', '5', or '6', then ADT Year and ADT are NOT NULL.

When a section is a Highway Performance Monitoring System sample, ADT Year and ADT are NOT NULL.

DSGN_HR_VLM_PCT
The design hour volume (30th highest hour) as a percentage of the annual average daily traffic, to the nearest whole percent. This is also known as the K-factor.
When a section is a Highway Performance Monitoring System sample, Design Hour Volume Percent is NOT NULL.

TRCK_PCT
Percentage of commercial vehicles, to the nearest whole percent, excluding pickups, panels, and light trucks (2-axle, 4-tired) for the off-peak period. In this instance, buses are considered commercial vehicles.

SMPL_SBDVSN_ID
First five digits are a unique number that is permanently assigned to the sample section and always remains unchanged. Last digit is subdivision and is zero until section is divided due to capital or operational improvements.
Must be digits only.

When a section is a Highway Performance Monitoring System sample, Sample Subdivision ID is NOT NULL.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_DRCTNL_CHARACTERISTIC
X

X
CNTY_NBR
INVD_RTE_ID
MLPST_BGN_NBR
CHARSTC_MLPST_BGN_NBR
TRVL_DRCTN_CD
ASC
ASC
ASC
ASC
ASC

FTV_DRCTNL_CHARACTERISTIC_FK1_

X

CNTY_NBR
INVD_RTE_ID
MLPST_BGN_NBR
CHARSTC_MLPST_BGN_NBR
ASC
ASC
ASC
ASC

7.1.14 FTV_MASTER_LOOKUP Table

The Master Lookup table contains valid values used by the application for data entry validation and to provide text descriptions for output.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

DATA_SRC_NM
Data Source Name
VARCHAR2(32)
X

X

VL_CD
Value Code
VARCHAR2(3)
X

X

DATA_SRC_DES
Data Source Description
VARCHAR2(50)

X

VL_TXT
Value Text
VARCHAR2(200)

X

TBL_GRP_CD
Table Group Code
VARCHAR2(15)

Column Definitions

Column Name
Column Definition
Business Rules

DATA_SRC_NM
The name of the column or control for which valid values are stored.

VL_CD
The code portion of the set of valid values.

DATA_SRC_DES
The descriptive name of the column or control for which valid values are stored.

VL_TXT
The descriptive text portion of the set of valid values.

TBL_GRP_CD
The table group for which a set of data elements is validated.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_MASTER_LOOKUP
X

X
DATA_SRC_NM
VL_CD
ASC
ASC

7.1.15 FTV_FEATURE_NAME Table

The Feature Name table contains the listing of all routes and political boundaries identified in accident records, as well as all known spellings of city streets. Each street name is cross-referenced to a code value that corresponds with the preferred spelling of the street. The table is used to convert unvalidated street text from accident records to the eight-digit code, which is then used by the mileposting process to attempt to milepost the accident. It is also used as a text lookup for routes and political boundaries.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

FTR_TXT
Feature Text
VARCHAR2(20)
X

X

FTR_CD
Feature Code
CHAR(8)

X

FTR_PRFRD_TXT_IND
Feature Preferred Text Indicator
CHAR(1)

X

REMLPST_RQRD_IND
Remilepost Required Indicator
CHAR(1)

X

LST_UPDT_TS
Last Update Timestamp
DATE

X

LST_UPDT_USER_ID
Last Update User Identifier
VARCHAR2(20)

X

Column Definitions

Column Name
Column Definition
Business Rules

FTR_TXT
The spelling variation of the feature.

FTR_CD
The eight-digit code corresponding to the preferred name for a feature.
Must be digits only.

FTR_PRFRD_TXT_IND
Identifies whether the spelling indicated is the correct (preferred) spelling for the feature.
The value must be either 'Y' or 'N'.

Default is 'N'.

REMLPST_RQRD_IND
Indicates the record is either new or has been changed in such a way that remileposting should be performed.
The value must be either 'Y' or 'N'.

Default value for new feature name records is 'Y'.

For existing records, the value is set to 'Y' if feature code is updated.

LST_UPDT_TS
Date and time of record creation or last update.

LST_UPDT_USER_ID
User who created or last updated the record.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_FEATURE_NAME
X

X
FTR_TXT
ASC

7.1.16 FTV_SCNDRY_ROUTE

The Secondary Route table contains the local street names corresponding with secondary routes.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

CNTY_NBR
County Number
NUMBER(3)
X
X
X

RD_CD
Road Code
CHAR(8)
X

X

ALTRNT_RD_TXT
Alternate Road Text
VARCHAR2(20)
X

X

LST_UPDT_USER_ID
Last Update User Identifier
VARCHAR2(20)

X

LST_UPDT_TS
Last Update Timestamp
DATE

X

Column Definitions

Column Name
Column Definition
Business Rules

CNTY_NBR
The code value that represents a county in North Carolina.

RD_CD
The eight-digit code representing a secondary route.
Must be digits only.

ALTRNT_RD_TXT
The local street name associated with a secondary route.

LST_UPDT_USER_ID
User who created or last updated the record.

LST_UPDT_TS
Date and time of record creation or last update.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_SCNDRY_ROUTE
X

X
CNTY_NBR
RD_CD
ALTRNT_RD_TXT
ASC
ASC
ASC

FTV_SCNDRY_ROUTE_FK1_IDX

X

CNTY_NBR
ASC

7.1.17 FTV_USER Table

The User table contains the master list of TEAAS application users.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

USER_ID
User Identifier
VARCHAR2(20)
X

X

USER_PSWRD
User Password
VARCHAR2(12)

X

FRST_NM
First Name
VARCHAR2(20)

X

MID_NM
Middle Name
VARCHAR2(20)

LST_NM
Last Name
VARCHAR2(25)

X

PHN_NBR
Phone Number
CHAR(10)

LST_UPDT_TS
Last Update Timestamp
DATE

X

LST_UPDT_USER_ID
Last Update User Identifier
VARCHAR2(20)

X

Column Definitions

Column Name
Column Definition
Business Rules

USER_ID
The TEAAS application user.

USER_PSWRD
The user's encrypted password.

FRST_NM
The user's first name.

MID_NM
The user's middle name.

LST_NM
The user's last name.

PHN_NBR
The user's telephone number.

LST_UPDT_TS
Date and time of record creation or last update.

LST_UPDT_USER_ID
User who created or last updated the record.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_USER
X

X
USER_ID
ASC

7.1.18 FTV_USER_ROLE Table

The User Role table stores all application roles granted to users. This table is referenced by the application to determine the type of access to provide a user when they enter the application.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

USER_ID
User Identifier
VARCHAR2(20)
X
X
X

ROLE_ID
Role Identifier
VARCHAR2(10)
X
X
X

LST_UPDT_TS
Last Update Timestamp
DATE

X

LST_UPDT_USER_ID
Last Update User Identifier
VARCHAR2(20)

X

Column Definitions

Column Name
Column Definition
Business Rules

USER_ID
The TEAAS application user.

ROLE_ID
The TEAAS role granted to the user.

LST_UPDT_TS
Date and time of record creation or last update.

LST_UPDT_USER_ID
User who created or last updated the record.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_USER_ROLE
X

X
USER_ID
ROLE_ID
ASC
ASC

FTV_USER_ROLE_FK1_IDX

X

USER_ID
ASC

FTV_USER_ROLE_FK2_IDX

X

ROLE_ID
ASC

7.1.19 FTV_ROLE Table

The Role table contains the master list of TEAAS application roles. Each role represents the way in which the user will interact with the application.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

ROLE_ID
Role Identifier
VARCHAR2(10)
X

X

ROLE_TXT
Role Text
VARCHAR2(50)

X

Column Definitions

Column Name
Column Definition
Business Rules

ROLE_ID
The TEAAS application role, associated with functional privileges in the application.

ROLE_TXT
The full name of the TEAAS application role.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_ROLE
X

X
ROLE_ID
ASC

7.1.20 FTV_ROLE_FUNCTION Table

The Role Function table stores the assignment of application functions to roles. This table is referenced when a user enters the application to determine the functions associated with their role. The application then provides access to the appropriate functions.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

ROLE_ID
Role Identifier
VARCHAR2(10)
X
X
X

FNCTN_ID
Function Identifier
VARCHAR2(10)
X
X
X

CRTE_PRVLG_IND
Create Privilege Indicator
CHAR(1)

X

READ_PRVLG_IND
Read Privilege Indicator
CHAR(1)

X

UPDT_PRVLG_IND
Update Privilege Indicator
CHAR(1)

X

DEL_PRVLG_IND
Delete Privilege Indicator
CHAR(1)

X

CPY_PRVLG_IND
Copy Privilege Indicator
CHAR(1)

X

Column Definitions

Column Name
Column Definition
Business Rules

ROLE_ID
The TEAAS application role, associated with functional privileges in the application.

FNCTN_ID
The application function assigned to the role.

CRTE_PRVLG_IND
Identifies whether the role has the privilege of creating new records.
The value must be either 'Y' or 'N'.

Default is 'N'.

READ_PRVLG_IND
Identifies whether the role has the privilege of reading (viewing) records.
The value must be either 'Y' or 'N'.

Default is 'N'.

UPDT_PRVLG_IND
Identifies whether the role has the privilege of updating existing records.
The value must be either 'Y' or 'N'.

Default is 'N'.

DEL_PRVLG_IND
Identifies whether the role has the privilege of deleting existing records.
The value must be either 'Y' or 'N'.

Default is 'N'.

CPY_PRVLG_IND
Identifies whether the role has the privilege of copying an existing study (for reports).
The value must be either 'Y' or 'N'.

Default is 'N'.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_ROLE_FUNCTION
X

X
ROLE_ID
FNCTN_ID
ASC
ASC

FTV_ROLE_FUNCTION_FK1_IDX

X

ROLE_ID
ASC

FTV_ROLE_FUNCTION_FK2_IDX

X

FNCTN_ID
ASC

7.1.21 FTV_FUNCTION Table

The Function table contains the master list of application functions. Functions are hierarchical in nature and may have subordinate functions.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

FNCTN_ID
Function Identifier
VARCHAR2(10)
X

X

FNCTN_TXT
Function Text
VARCHAR2(50)

X

FNCTN_PARNT_ID
Function Parent Identifier
VARCHAR2(10)

X

GUI_CLS_NM
GUI Class Name
VARCHAR2(32)

Column Definitions

Column Name
Column Definition
Business Rules

FNCTN_ID
A TEAAS application function.

FNCTN_TXT
The full name of the application function.

FNCTN_PARNT_ID
The parent function of a subordinate function.

GUI_CLS_NM
The name of the GUI Java class associated with the function.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_FUNCTION
X

X
FNCTN_ID
ASC

FTV_FUNCTION_FK1_IDX

X

FNCTN_PARNT_ID
ASC

7.1.22 FTV_USER_REPORT Table

The User Report table stores information and basic criteria for a study report generated by an individual.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

STDY_NM
Study Name
VARCHAR2(30)
X

X

LCTN_TXT
Location Text
VARCHAR2(160)

LOG_NBR
Log Number
VARCHAR2(11)

PH_NBR
Potentially Hazardous Number
VARCHAR2(10)

TIP_NBR
Transportation Improvement Program Number
VARCHAR2(10)

CNTY_NBR
County Number
NUMBER(3)

X

MNCPLTY_IND
Municipality Indicator
CHAR(1)

X

MNCPLTY_CD
Municipality Code
NUMBER(2)

Y_LINE_LEN
Y Line Length
NUMBER(4)

ADT_CNT
ADT Count
NUMBER(6)

ADT_RTE_NBR
ADT Route Number
CHAR(8)

STDY_BGN_DT
Study Begin Date
DATE

STDY_END_DT
Study End Date
DATE

RQST_RCVD_DT
Request Received Date
DATE

RQSTR_FULL_NM
Requestor Full Name
VARCHAR2(65)

COURR_ADR
Courier Address
VARCHAR2(10)

RQSTR_PHN_NBR
Requestor Phone Number
CHAR(10)

RQSTR_FAX_NBR
Requestor Facsimile Number
CHAR(10)

RPRT_TYP_CD
Report Type Code
CHAR(1)

X

USER_ID
User Identifier
VARCHAR2(20)

X
X

Column Definitions

Column Name
Column Definition
Business Rules

STDY_NM
The unique name given the study criteria.

LCTN_TXT
The text describing the area under study.

LOG_NBR
A number assigned by the user to identify the study.

PH_NBR
The number used by the Highway Safety Improvement Program to track potentially hazardous areas.

TIP_NBR
The number assigned by the Division of Highways to track Transportation Improvement Program projects.

CNTY_NBR
The North Carolina county for which accident records should be retrieved.

MNCPLTY_IND
Indicates whether the value of the municipality code field is part of the selection criteria.
The value must be either 'Y' or 'N'.

Default is 'N'.

MNCPLTY_CD
The incorporated municipality for which accident records should be retrieved.
Must be a valid municipality for the selected county.

Y_LINE_LEN
The maximum distance from the on road within which accidents should be retrieved.
Must be >= 0.

ADT_CNT
Annual average daily traffic count for the location under study.
Must be >= 1.

ADT_RTE_NBR
The route to which the ADT count corresponds.

STDY_BGN_DT
The beginning of the date range for retrieval of accident records.
Begin date must be <= end date.

STDY_END_DT
The ending of the date range for retrieval of accident records.
End date must be >= begin date.

RQST_RCVD_DT
The date on which the request for information was received.

RQSTR_FULL_NM
The full name of the person requesting information.

COURR_ADR
The courier address for the person requesting information.

RQSTR_PHN_NBR
The phone number of the requestor.

RQSTR_FAX_NBR
The fax number for the requestor.

RPRT_TYP_CD
The kind of report for which the criteria is being saved.
Must be either 'I' (intersection) or 'S' (strip).

USER_ID
The TEAAS application user who created the report criteria.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_USER_REPORT
X

X
STDY_NM
ASC

FTV_USER_REPORT_FK1_IDX

X

CNTY_NBR
ASC

FTV_USER_REPORT_FK2_IDX

X

USER_ID
ASC

7.1.23 FTV_STRIP_ROAD Table

The Strip Road table contains the list of roads to be used in the report criteria, along with the milepost range to be used for each road.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

STDY_NM
Study Name
VARCHAR2(30)
X
X
X

RD_CD
Road Code
CHAR(8)
X

X

MLPST_BGN_NBR
Milepost Begin Number
NUMBER(6,3)

MLPST_END_NBR
Milepost End Number
NUMBER(6,3)

Column Definitions

Column Name
Column Definition
Business Rules

STDY_NM
The unique name given the study criteria.

RD_CD
The route or street code identification of the roadway. The roadway may be identified by more than one road code.

MLPST_BGN_NBR
The lowest milepost value for the range in which accident records should be retrieved.
Begin milepost must be <= end milepost.

MLPST_END_NBR
The highest milepost value for the range in which accident records should be retrieved.
End milepost must be >= begin milepost.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_STRIP_ROAD
X

X
STDY_NM
RD_CD
ASC
ASC

FTV_STRIP_ROAD_FK1_IDX

X

STDY_NM
ASC

7.1.24 FTV_INTERSECTION_ROAD Table

The Intersection Road table contains the list of intersecting roads to be used in the report criteria.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

STDY_NM
Study Name
VARCHAR2(30)
X
X
X

RDWY_NBR
Roadway Number
NUMBER(2)
X

X

RD_CD
Road Code
CHAR(8)
X

X

Column Definitions

Column Name
Column Definition
Business Rules

STDY_NM
The unique name given the study criteria.

RDWY_NBR
Each road making up the intersection is identified as "Road 1," "Road 2," etc.

RD_CD
The route or street code identification of the roadway. Each roadway may be identified by more than one road code.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_INTERSECTION_ROAD
X

X
STDY_NM
RDWY_NBR
RD_CD
ASC
ASC
ASC

FTV_INTERSECTION_ROAD_FK1_ID

X

STDY_NM
ASC

7.1.25 FTV_ACCIDENT_ADJUSTMENT Table

The Accident Adjustment table stores accidents that should be included in, or excluded from the study. Inclusions are those accidents that would not be retrieved by the report criteria, or may not be mileposted correctly due to errors in the location data. Exclusions are those accidents that would be retrieved by the report criteria but should not be included in the study due to errors in the location data. These accidents are identified through manual analysis of individual accident reports.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

STDY_NM
Study Name
VARCHAR2(30)
X
X
X

CRSH_ID
Crash Identifier
NUMBER(10)
X

X

ADJSTMT_TYP_CD
Adjustment Type Code
CHAR(1)

X

OLD_MLPST_NBR
Old Milepost Number
NUMBER(6,3)

NEW_MLPST_NBR
New Milepost Number
NUMBER(6,3)

Column Definitions

Column Name
Column Definition
Business Rules

STDY_NM
The unique name given the study criteria.

CRSH_ID
The unique identifier of a reported accident.

ADJSTMT_TYP_CD
The kind of adjustment being made.
Validated by valid values.

OLD_MLPST_NBR
The milepost location recorded on the accident record.
Recorded for strip analysis reports only.

Must be >= begin milepost and <= end milepost of the longest road segment under study.

NEW_MLPST_NBR
The correct milepost position of the accident.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_ACCIDENT_ADJUSTMENT
X

X
STDY_NM
CRSH_ID
ASC
ASC

FTV_ACCIDENT_ADJUSTMENT_FK1_ID

X

STDY_NM
ASC

7.1.26 FTV_FEATURE_INCLUSION Table

The Feature Inclusion table identifies the location of non-inventoried features, landmarks, or text annotations that should be printed on the strip analysis report.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

STDY_NM
Study Name
VARCHAR2(30)
X
X
X

FTR_TXT
Feature Text
VARCHAR2(20)
X

X

MLPST_NBR
Milepost Number
NUMBER(6,3)
X

X

Column Definitions

Column Name
Column Definition
Business Rules

STDY_NM
The unique name given the study criteria.

FTR_TXT
The non-inventoried feature, landmark, or text annotation to be included on the strip analysis report.

MLPST_NBR
The milepost location of the non-inventoried feature, landmark, or annotation.
Recorded for strip analysis reports only.

Must be >= begin milepost and <= end milepost of the longest road segment under study.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_FEATURE_INCLUSION
X

X
STDY_NM
FTR_TXT
MLPST_NBR
ASC
ASC
ASC

FTV_FEATURE_INCLUSION_FK1_IDX

X

STDY_NM
ASC

7.1.27 FTV_ERROR_CODE Table

The Error Code table contains the master list of application error messages. When an application error occurs, this table is referenced to present the appropriate text to the user, and to determine the appropriate action for the application to take.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

ERR_CD
Error Code
VARCHAR2(16)
X

X

ERR_MSG_TXT
Error Message Text
VARCHAR2(128)

X

ERR_TYP_CD
Error Type Code
CHAR(1)

X

ERR_ACTN_CD
Error Action Code
CHAR(1)

X

Column Definitions

Column Name
Column Definition
Business Rules

ERR_CD
The unique identifier for TEAAS application errors.

ERR_MSG_TXT
Text description of the error that occurred.

ERR_TYP_CD
Identifies the kind of error.
The value must be either 'E' (error) or 'O' (override).

ERR_ACTN_CD
The action the application will take when the error occurs.
Validated by valid values.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_ERROR_CODE
X

X
ERR_CD
ASC

7.1.28 FTV_ERROR_LOG Table

The Error Log table is used to store errors generated during application runtime. The table can be reviewed periodically to determine the kinds of errors that occur.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

ERR_CD
Error Code
VARCHAR2(16)

X
X

USER_ID
User Identifier
VARCHAR2(20)

X
X

ERR_TS
Error Timestamp
DATE

X

ERR_PARM_TXT
Error Parameter Text
VARCHAR2(64)

TRC_FILE_LCTN_TXT
Trace File Location Text
VARCHAR2(128)

Column Definitions

Column Name
Column Definition
Business Rules

ERR_CD
The TEAAS error that occurred.

USER_ID
The TEAAS user logged on when the error occurred.

ERR_TS
Date and time the error occurred.

ERR_PARM_TXT
The error parameter values captured when the error occurred.

TRC_FILE_LCTN_TXT
The location of the Java trace file created on the local computer.

Index List

Index Code
P
F
U
Column Code
Sort

FTV_ERROR_LOG_FK1_IDX

X

ERR_CD
ASC

FTV_ERROR_LOG_FK2_IDX

X

USER_ID
ASC

7.1.29 FTV_ORDINANCE Table

The Ordinance table is used to temporarily store and milepost ordinance records for the Division of Highways, Traffic Engineering Branch, Traffic Field Operations, Investigations, and Support Unit. Ordinances are mileposted by the TEAAS application.

Table Description

Column Name
Logical Name
Datatype
PK
FK
Req’d

CNTY_NBR
County Number
NUMBER(3)
X
X
X

ORDNNC_TYP_CD
Ordinance Type Code
CHAR(2)
X

X

ORDNNC_NBR
Ordinance Number
CHAR(5)
X

X

RTE_ON_ID
Route On Identifier
CHAR(8)

X

BGN_RFRNC_ID
Begin Reference Identifier
CHAR(8)

X

BGN_RFRNC_LEN
Begin Reference Length
NUMBER(4)

X

BGN_RFRNC_LEN_CD
Begin Reference Length Code
CHAR(1)

X

BGN_RFRNC_DRCTN_CD
Begin Reference Direction Code
CHAR(2)

X

END_RFRNC_ID
End Reference Identifier
CHAR(8)

X

END_RFRNC_LEN
End Reference Length
NUMBER(4)

X

END_RFRNC_LEN_CD
End Reference Length Code
CHAR(1)

X

END_RFRNC_DRCTN_CD
End Reference Direction Code
CHAR(2)

X

BGN_MLPST_NBR
Begin Milepost Number
NUMBER(6,3)

BGN_QLTY_CD
Begin Quality Code
CHAR(1)

BGN_HOR_ID
Begin Highest Order Route Identifier
CHAR(8)

BGN_HOR_MLPST_NBR
Begin Highest Order Route Milepost Number
NUMBER(6,3)

END_MLPST_NBR
End Milepost Number
NUMBER(6,3)

END_QLTY_CD
End Quality Code
CHAR(1)

END_HOR_ID
End Highest Order Route Identifier
CHAR(8)

END_HOR_MLPST_NBR
End Highest Order Route Milepost Number
NUMBER(6,3)

SGMT_LEN
Segment Length
NUMBER(6,3)

Column Definitions

Column Name
Column Definition
Business Rules

CNTY_NBR
The code value that represents a county in North Carolina.

ORDNNC_TYP_CD
The kind of ordinance.

ORDNNC_NBR
The ordinance identifier.

RTE_ON_ID
The road on which the ordinance is enforced.

BGN_RFRNC_ID
The feature referenced to help identify the beginning point for the ordinance.

BGN_RFRNC_LEN
The distance from the reference feature to the begin point of the ordinance.

BGN_RFRNC_LEN_CD
Identifies whether the reference distance was measured in miles or feet.

BGN_RFRNC_DRCTN_CD
The direction from the reference feature to the begin point of the ordinance.

END_RFRNC_ID
The feature referenced to help identify the ending point for the ordinance.

END_RFRNC_LEN
The distance from the reference feature to the end point of the ordinance.

END_RFRNC_LEN_CD
Identifies whether the reference distance was measured in miles or feet.

END_RFRNC_DRCTN_CD
The direction from the reference feature to the end point of the ordinance.

BGN_MLPST_NBR
The milepost location for the begin point of the ordinance.

BGN_QLTY_CD
Identifies how well the mileposting routine was able to identify the milepost location.

BGN_HOR_ID
The highest order route of all that coincide with the Route On at the beginning point of the ordinance.

BGN_HOR_MLPST_NBR
The ordinance begin milepost, as measured on the highest order route of all that coincide at that point.

END_MLPST_NBR
The milepost location for the end point of the ordinance.

END_QLTY_CD
Identifies how well the mileposting routine was able to identify the milepost location.

END_HOR_ID
The highest order route of all that coincide with the Route On at the ending point of the ordinance.

END_HOR_MLPST_NBR
The ordinance end milepost, as measured on the highest order route of all that coincide at that point.

SGMT_LEN
The difference between the begin and end milepost.

Index List

Index Code
P
F
U
Column Code
Sort

PK_FTV_ORDINANCE
X

X
CNTY_NBR
ORDNNC_TYP_CD
ORDNNC_NBR
ASC
ASC
ASC

FTV_ORDINANCE_FK1_IDX

X

CNTY_NBR
ASC

Appendix A: Report requirements

The following table provides an overview of each of the reports that have been identified as essential and will be developed for TEAAS.

TEAAS Report Name
TEAAS Report Description

Fiche
Basic analytical report that displays accident information for user-specified county, municipality, y-line distance, date span, and road. Output consists of the report criteria (i.e., user input) and a detail listing of predetermined data pertaining to each accident retrieved.

Intersection
Specialized analytical report that displays accident information for user-specified county, municipality, y-line distance, date span, and roads comprising the intersection under study. Additionally, the user may specify accidents to include or exclude from the study. Output consists of the report criteria, a detail listing of predetermined data pertaining to each accident retrieved, and several statistical summaries for the set of accidents retrieved.

Strip
Specialized analytical report that displays accident information for user-specified county, municipality, y-line distance, date span, road, and milepost range under study. Additionally, the user may specify accidents to include or exclude from the study, may modify milepost values of any included accidents, and may specify features (and associated milepost values) to be included in the study. Output consists of the report criteria, a detail listing of predetermined data pertaining to each accident retrieved, several statistical summaries for the set of accidents retrieved, and a strip diagram displaying the features and accidents at their respective milepost values within the specified milepost range along the road under study.

Ordinances / Ordinances Exception
To be determined during specifications phase.

Incorporated Municipalities
Reference report that requires no user input. Output consists of an alphabetic listing of all incorporated municipalities, and the county or counties, division or divisions, and unique code value or values for each.

Roads and Political Boundaries
Reference report that requires no user input for query purposes. However, the user must specify one of two report formats for the output. Output consists of: 1) an alphabetic listing of all road names (and political boundaries), a preferred spelling indicator, and each road name’s (or political boundary’s) code value; or 2) a numeric listing of all road (and political boundaries) codes, their respective road (or political boundary’s) name(s), and a preferred spelling indicator.

Features
Reference report that displays feature information for user-specified county and inventoried route code. Output consists of a listing of the feature type, feature ID, milepost value, distance to next feature, direction to next feature, loop condition indicator, and intersection type for every inventoried feature along the specified inventoried route for which such data exists.

Highest Order Segments
Reference report that displays highest order segment information for user-specified county and inventoried route. Output consists of beginning and ending milepost values for each segment along the user-specified route, the highest order route code for that segment, the beginning and ending milepost values for that segment along the highest order route, the milepost delta between the two segments, and an indicator of the direction of inventory for the highest order route.

Uncoded Roads
Exception report that requires no user input. Output consists of an alphabetic listing of all on road, reference road, or toward road entries that have no corresponding code value (i.e., the text entered from the accident record did not successfully encode during mileposting) and the number of times that road name appears with no corresponding code value.

Uncoded Municipalities
Exception report that requires no user input. Output consists of a listing of all municipality names that have no corresponding code value (i.e., the text entered from the accident record did not successfully encode) and the accident case number for each name.

Error Log
To be determined during specifications phase.

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

_991831250.doc

TEAAS Secondary

Data Maintainer

TEAAS Primary Data

Maintainer

TEAAS Technical

Query User

TEAAS Public Query

User

TEAAS System

Administrator

Modify Password

_991835217.doc

Accident

 MilePost

DMV Crash

User Maintenance

Provide Query Output

Ordinance Milepost

TEAAS Technical

Query User

TEAAS Public Query

User

TEAAS System

Administrator

Modify Password

Update Highest Order Segments

Update Inventoried Route

Add Inventoried Route

Update Features + Milepost

<<uses>>

Maintain Road Names

<<uses>>

Maintain Secondary

 Routes

Identify Lookup

 Exceptions

<<uses>>

TEAAS Secondary

Data Maintainer

TEAAS Primary Data

Maintainer

Process Queries

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

TEAAS

_992087488.doc

TEAAS Primary Data

Maintainer

Update Highest Order

Segments

Accident

 MilePost

<<uses>>

_992091763.doc

TEAAS Primary Data Maintainer

3: milepostAccident ()

inventoriedRoute : InventoriedRoute

1: modifyInventoriedRoute ()

2: notifyChange ()

changeListener : ChangeListener

accident : Accident

_991836025.doc

TEAAS Primary Data Maintainer

2: notifyChange ()

highestOrderSegment : HighestOrderSegment

3: milepostAccident ()

accident : Accident

1:

modifyHighestOrderSegment

()

changeListener : ChangeListener

_992072504.doc

TEAAS Primary Data Maintainer

accident : Accident

inventoriedRoute : InventoriedRoute

1: modifyInventoriedRoute ()

4: milepostAccident ()

3: notifyChange ()

changeListener : ChangeListener

2: modifyFeature ()

feature : Feature

_991835533.doc

politicalBoundary : PoliticalBoundary

changeListener : ChangeListener

accident : Accident

TEAAS Primary Data Maintainer

2: notifyChange ()

3: milepostAccident ()

1: modifyPoliticalBoundary ()

_991834922.doc

secondaryRoute : SecondaryRoute

TEAAS Data

Maintainer

1: modifySecondaryRoute()

_991835184.doc

Maintain Secondary

Routes

TEAAS Secondary

Data Maintainer

TEAAS Primary Data Maintainer

_991833818.doc

featureName : FeatureName

TEAAS Data

Maintainer

Road exceptions report

changeListener : ChangeListener

accident : Accident

3: notifyChange ()

2: modifyFeatureName()

1: Provides input

4: milepostAccident ()

_991833997.doc

TEAAS Primary Data Maintainer

mileMarker : MileMarker

changeListener : ChangeListener

accident : Accident

1: modifyMileMarker ()

2: notifyChange ()

3: milepostAccident ()

_991831945.doc
[image: image1.png]

1

Ordinance

countyNum : int

ordinanceTypeCode : String

ordinanceNum : String

beginReferenceUnit : String

endReferenceUnit : String

segmentLength : float

Ordinance ()

milepostOrdinance () : boolean

convertUnit (inValue : float, valueType : String) : float

2

Encoder

textDescription : String

code : String

Encoder ()

encode (textDescription : String) : String

identifyTextDescription (textDescription : String) : String

InventoriedRoute

countyNum : int

inventoriedRouteID : String

milepostBeginNum : float

milepostEndNum : float

reMilepostReqdInd : char

InventoriedRoute (routeID : String)

modifyInventoriedRoute ()

isInventoriedRoute () : boolean

findRouteFeature (featureID : String)

getHighestOrderSegment (mpRoute : String, ...)

1

1

Location

onRoad : String

referenceFeature : String

towardFeature : String

distanceFromReferenceFeature : float

directionFromReferenceFeature : String

directionToTowardFeature : String

milepostRoute : String

milepostNumber : float

milepostQualityInd : char

coincidingRouteInd : char

rampOrServiceRoad : boolean

HOMilepostRoute : String

HOMilepostNum : float

Location ()

setLocation (onRoad : String, ...) : Location

getLocation (loc : Location, onRoad : String, ...) : boolean

milepost (loc : Location, onRoad : String, ...) : boolean

encodeLocations () : boolean

encode

isInventoriedRoute, findRouteFeature, getHighestOrderSegment

1

Accident

accidentID : String

Accident ()

milepostAccident () : boolean

1

Feature

milepostNum : float

Feature ()

identifyFeatureType ()

ChangeListener

notifyChange (chg : String, type : String)

notifyChange

FeatureName

featureCode : String

featureDescription : String

featurePreferredTextInd : char

reMilepostReqdInd : char

FeatureName ()

encode (textDescription : String) : String

modifyFeatureName () : boolean

_991831417.doc
[image: image1.png]

Error

errorCode : String

errorMessage : String

errorTypeCode : char

errorActionCode : char

errorParamValue : String

traceFileLocation : String

Error (errorCode : String)

display () : boolean

updateLog (traceFileName : String) : void

Lookup

fieldCode : String

valueCode : String

fieldText : String

valueText : String

tableGroupText : String

Lookup (fieldCode : String)

getValueCodes () : String

getValueCode (text : String) : String

getAllValueText () : String

getValueText (fieldCode : String) : String

getAll () : Enumeration

State

stateCode : String

stateDescription : String

State ()

encode (textDescription : String) : String

FeatureName

featureCode : String

featureDescription : String

featurePreferredTextInd : char

reMilepostReqdInd : char

FeatureName ()

encode (textDescription : String) : String

modifyFeatureName () : boolean

Encoder

textDescription : String

code : String

Encoder ()

encode (textDescription : String) : String

identifyTextDescription (textDescription : String) : String

encode

1

County

countyNum : int

countyDescription : String

County ()

encode (textDescription : String) : String

*

Municipality

municipalityCode : String

municipalityDescription : String

Municipality ()

encode (textDescription : String) : String

1

User

userID : String

password : String

firstName : String

middleName : String

lastName : String

phoneNumber : String

User ()

modifyUser ()

setPassword ()

modifyRoles ()

*

1

Role

roleID : String

roleText : String

Role ()

getFunctions () : String

*

Function

functionID : String

functionText : String

parentFunctionID : String

GUIClassName : String

Function ()

getParentFunctionID () : String

_986889610.doc

Use Case Name

_990435329.doc

TEAAS Query

User

report : Report

1: identifyMunicipalityExceptions ()

2: Deliver municipality exceptions report

_990436113.doc

TEAAS Primary Data Maintainer

intersection : Intersection

changeListener : ChangeListener

accident : Accident

1: modifyIntersection ()

2: notifyChange ()

3: milepostAccident ()

_990436139.doc

TEAAS Primary Data Maintainer

structure : Structure

1: modifyStructure ()

_991830523.doc
[image: image1.png]

Intersection

intersectingRouteID : String

intersectionTypeCode : char

intersectingRouteMilepostNum : float

nextFeatureDirectionCode : char

loopConditionInd : char

outsideCountyInd : char

reMilepostReqdInd : char

Intersection ()

modifyIntersection ()

MileMarker

mileageNumber : int

nextFeatureDirectionCode : char

outsideCountyInd : char

reMilepostReqdInd : char

MileMarker ()

modifyMileMarker ()

RailroadCrossing

railroadCrossingID : String

RailroadCrossing ()

modifyRRCrossing ()

PoliticalBoundary

boundaryID : String

nextFeatureDirectionCode : char

loopConditionInd : char

reMilepostReqdInd : char

PoliticalBoundary ()

modifyPoliticalBoundary ()

Structure

structureID : String

structureTypeCode : String

Structure ()

modifyStructure ()

Audit

userID : String

timestamp : String

Audit ()

getUser () : String

setUser (userID : String) : boolean

getDate () : String

setDate (timestamp : String) : boolean

Report

identifyMunicipalityExceptions () : int

identifyRoadExceptions () : int

1

*

HighestOrderSegment

segmentMilepostBeginNum : float

segmentMilepostEndNum : float

initialSegmentInd : char

HORouteID : String

HORMilepostBeginNum : float

HORMilepostEndNum : float

inventoryDirectionCode : char

milepostDeltaQuantity : float

reMilepostReqdInd : char

HighestOrderSegment ()

modifyHighestOrderSegment ()

1

InventoriedRoute

countyNum : int

inventoriedRouteID : String

milepostBeginNum : float

milepostEndNum : float

reMilepostReqdInd : char

InventoriedRoute (routeID : String)

modifyInventoriedRoute ()

isInventoriedRoute () : boolean

findRouteFeature (featureID : String)

getHighestOrderSegment (mpRoute : String, ...)

*

Feature

milepostNum : float

Feature ()

identifyFeatureType ()

SecondaryRoute

countyNum : int

roadCode : String

alternateRoadDescription : String

SecondaryRoute ()

modifySecondaryRoute ()

_990435390.doc

TEAAS Query

User

report : Report

1: identifyRoadExceptions ()

2: Deliver road exceptions report

_990436057.doc

railroadCrossing : RailroadCrossing

TEAAS Primary Data Maintainer

1: modifyRRCrossing ()

_986891648.doc

Actor Name

_986891804.doc

TEAAS User

user : User

1: setPassword ()

_986889702.doc

Use Case Name

Actor Name

_986794212.doc

objectName : ClassName

_986878444.doc

TEAAS System

Administrator

role : Role

user : User

2: setPassword ()

1: modifyUser ()

3: modifyRoles ()

_986889594.doc

Actor Name

_986799404.doc

TEAAS System

Administrator

location : Location

countyRoute : CountyRoute

feature : Feature

ordinance : Ordinance

3: successEncode :=

encodeLocations ()

1: milepostOrdinance ()

4: (successEncode) is

InventoriedRoute ()

5: findRouteFeature ()

2: milepost (loc, onRoad, ...)

6: identifyFeatureType ()

7: getHighestOrderSegment ()

_986802713.doc

DMV Crash

location : Location

encoder : Encoder

countyRoute :

CountyRoute

feature : Feature

accident : Accident

3:

successEncode

 :=

encodeLocations ()

5:

identifyTextDescription

()

1:

milepostAccident

()

4:

code := encode ()

6: (

successEncode) is

InventoriedRoute

()

7:

findRouteFeature

()

9:

getHighestOrderSegment

()

8:

identifyFeatureType

()

2: milepost (

loc,

onRoad

, ...)

_986794257.doc

objectName : ClassName

_986704671.doc
[image: image1.bmp][image: image2.bmp]

County

countyCode

 : String

countyDescription

 : String

County()

encode()

