[image: image1.wmf]KEANE

Traffic Engineering Accident Analysis System

Standards and Guidelines

for

The State of North Carolina

Department of Transportation

Information Systems Technology

June 9, 1999

Version 2.0

Deliverable #74-17

Presented by:

Keane, Inc.

2525 Meridian Parkway

Suite 400

Durham, NC 27713

 (919) 544-0891

Table of Contents

11
Overview

1.1
Background
1
1.2
Objective
1
2
Database NAMING standards
2
2.1
Tables
2
2.2
Synonyms
2
2.3
Views
2
2.4
Columns
2
2.5
Primary Key Constraints
2
2.6
Foreign Key Constraints
3
2.7
Check Constraints
3
2.8
Indexes
3
3
Graphical User Interface
4
3.1
GUI Standards
4
3.1.1
Visual Design
4
3.1.2
Consistency
5
3.1.3
Compatibility
5
3.1.4
Informative Feedback
5
3.1.5
Appropriate Functionality
6
3.1.6
Error Prevention and Correction
6
3.2
GUI Development Guidelines
6
3.2.1
Windows
7
3.2.2
Title
7
3.2.3
Layout
8
3.2.4
Color
8
3.2.5
Font
8
3.2.6
Buttons
8
3.2.7
Radio Buttons
8
3.2.8
Components
9
3.2.9
Tab Navigation
9
3.2.10
Menus
9
3.2.11
Toolbars
10
3.2.12
Audit Groupbox
11
3.2.13
Error Dialog Boxes
12
4
ERROR HANDLING STRATEGIES
13
4.1
Message Types
13
4.1.1
Error Messages
13
4.1.2
Override Messages
13
4.1.3
Debug Messages
13
4.2
Batch Processing Errors
14
4.3
Error Codes
14
4.4
Error Messages
14
4.5
Error Log
15
4.6
Reporting
15
4.7
Tracing
15
5
EXECUTION ENVIRONMENT STANDARDS
16
5.1
Directory Structure
16
5.1.1
Client
16
5.1.2
Application Server
17
5.1.3
Database Server
17
5.2
Application Packaging
18
5.3
Application Upgrade Strategy
18
5.3.1
DDL Changes
18
5.3.2
Source Code Changes
19
6
Database Locking Strategies
20
6.1
Updates in TEAAS
20
6.2
Online Updates
20
6.3
Batch Updates
21
6.4
Deadlocks
21
7
Java Coding Standards
22
7.1
Source Files
22
7.1.1
Heading Comments
22
7.1.2
Package and Import Statements
22
7.1.3
Class and Interface Declarations
22
7.2
Formatting
23
7.2.1
Indentation
23
7.2.2
Line Length
23
7.2.3
Line Wrapping
23
7.2.4
Blank Lines
23
7.2.5
Blank Spaces
23
7.3
Source Code Documentation
24
7.3.1
Block Comments
24
7.3.2
Single-line Comments
24
7.3.3
Trailing Comments
25
7.3.4
What to Document
25
7.4
Naming Conventions
26
7.4.1
Packages
26
7.4.2
Classes and Interfaces
27
7.4.3
Methods
27
7.4.4
Variables and Parameters
27
7.4.5
Constants
28
7.4.6
File Names
29
7.5
Declarations
29
7.6
Simple Statements
29
7.7
Compound Statements
30
8
SQL CoDING STANDARDS
32
8.1
Formatting
32
8.1.1
Capitalization
32
8.1.2
Indentation
32
8.1.3
Line Length
32
8.1.4
Line Breaks
33
8.1.5
Blank Lines
33
8.1.6
Blank Spaces
33
8.2
Aliases
34
8.3
Comments
34
8.3.1
Single-line Comments
34
8.3.2
Block Comments
35
8.4
SQL Script Files
35
9
PL/SQL CoDING STANDARDS
36
9.1
File Headers
36
9.2
Formatting
36
9.2.1
Capitalization
36
9.2.2
Indentation
37
9.2.3
Line Length
37
9.2.4
Line Breaks
37
9.2.5
Blank Lines
38
9.2.6
Blank Spaces
38
9.2.7
Formatting Control Structures
38
9.3
Comments
39
9.3.1
Single-line Comments
39
9.3.2
Block Comments
39
9.4
Declarations
40
9.5
Naming Conventions
40
9.5.1
Variables
40
9.5.2
Constants
41
9.5.3
Cursors
41
9.5.4
Records
41
9.5.5
Named PL/SQL Blocks
41
10
Component SPECIFICATION STANDARDS
42
10.1
Revision History
42
10.2
Presentation Component
42
10.2.1
Name
42
10.2.2
Purpose
42
10.2.3
Composition
42
10.3
Business Rule Component
44
10.3.1
Name
44
10.3.2
Purpose
44
10.3.3
Composition
44
10.4
Interface Definition Language Component
44
10.4.1
Name
45
10.4.2
Purpose
45
10.4.3
Composition
45
10.5
Data Access Component
45
10.5.1
Name
45
10.5.2
Purpose
45
10.5.3
Composition
45
11
UNIT TEST STANDARDS
47
11.1
Module Description
48
11.2
Application Release Version
48
11.3
Tests
48
11.4
Clean Up
49
11.5
Unit Test Results
49
12
SOFTWARE QUALITY CHECKLISTS
50
12.1
Presentation Components
50
12.2
Business Rule Components
50
12.3
Interface Definition Language Components
51
12.4
Data Access Components
51
12.5
SQL Scripts
51
12.6
PL/SQL Scripts
52
12.7
Database Generation Scripts
52
13
DOCUMENTATION STANDARDS
53
13.1
General
53
13.2
Conventions
53
13.3
Screen Captures
54
13.4
User Documentation
54
13.5
Operations Documentation
55

1 Overview

This section provides a brief background to the Traffic Engineering Accident Analysis System (TEAAS) project and describes the overall objective of this document relative to the project.

1.1 Background

The State of North Carolina Department of Transportation-Information Systems Technology (DOT-IST) has requested that Keane, Inc., design, construct, test, and implement a new N-tier client/server system, using CORBA technology and an Oracle database, for the Traffic Engineering and Safety Systems Management Unit (TSSMU) to replace the current mainframe Merge System.

The project officially began in January 1999 with the Technical Environment phase. This document, TEAAS Standards and Guidelines, establishes the standards for future phases of the project.

1.2 Objective

The objective of this document is to define practical standards and guidelines that will be used by the Keane TEAAS software development team during the creation of design specifications, coding, and testing of the new system.

Standards and guidelines are provided to:

· Improve productivity

· Ensure consistency and continuity

· Minimize the learning curve for project staff

· Facilitate maintenance and support.

2 Database NAMING standards

Naming conventions make software products readable and easily maintainable. The TEAAS database naming conventions outlined here will be adhered to throughout the project to ensure consistency among all products developed by the project team.

Database creation scripts will be created using PowerDesigner’s Data Architect modeling tool. Within this application and the table creation environment, database names will be entirely uppercase, using the underscore character (“_”) to separate words. No dashes or special characters will be used. Database names may not exceed 30 characters in length.

2.1 Tables

Table names will be in singular tense, and descriptive of the information contained within the table. As required by DOT –IST, table names will be prefixed with the DOT-IST billing code “FTV”, which identifies TSSMU.

Examples:
FTV_STRUCTURE

FTV_POLITICAL_BOUNDARY

2.2 Synonyms

Table synonyms will begin with the prefix “FTV_S_” followed by the table name it references.

Example:
FTV_S_BOUNDARY

2.3 Views

View names will begin with the prefix “FTV_VW_” followed by a name descriptive of the information contained within the view. View names will be in singular tense.

Example:
FTV_VW_ACCIDENT_FATALITY

2.4 Columns

Column name abbreviations will be created in accordance with the NC DOT-IST Standard Word-Phrase-Abbreviation Glossary. Column names will be in singular tense.

Examples:
INVD_RTE_ID

BNDRY_TYP_CD

2.5 Primary Key Constraints

Primary key constraint names will be comprised of the prefix “PK_” concatenated to the table name.

Examples:
PK_STRUCTURE

PK_POLITICAL_BOUNDARY

2.6 Foreign Key Constraints

Foreign key constraint names will be comprised of the prefix “FK_”, the current table name, an underscore, and the table being referenced. An incremented, numeric suffix will be used for each subsequent reference to the same table.

Example:
FK_MUNICIPALITY_COUNTY

2.7 Check Constraints

Check constraint names will be comprised of the prefix “CKC_”, the column name being checked, and the table name.

Example:
CKC_LOOP_CNDTN_IND_INTERSECTION

2.8 Indexes

· Primary key indexes will be named identically to the primary key constraint.

Example:
PK_INTERSECTION

· Foreign key indexes will be comprised of the table name, “_FK”, a sequential number, and the suffix “_IDX”.

Example:
INTERSECTION_FK1_IDX

· Alternate indexes will be comprised of the table name, “_ALT”, a sequential number, and the suffix “_IDX”.

Example:
INTERSECTION_ALT1_IDX

3 Graphical User Interface

The primary goal of the graphical user interface (GUI) design standards and guidelines is to ensure the development of a consistent and appealing user interface, one with a standard look and feel to reduce the time it takes for a user to learn the system.

A well-designed user interface is built on principles and a development process that centers on users and their tasks. The following “GUI Standards” sections summarize the standards to be employed in developing the TEAAS user interface. The objective of the standards is to benefit the system’s users, not to enforce a rigid set of rules. Consistency in design will make it easier for the user to transfer skills from one task to another within the new system. The subsequent “GUI Development Guidelines” sections will outline the specific GUI development guidelines to be followed by the project team developers.

3.1 GUI Standards

The main consideration of the GUI standards is the composition of the GUI. Composition covers the form layout, aesthetic appeal, and usability.

3.1.1 Visual Design

Visual design is the way in which information is displayed on the screen. The GUI visual design should incorporate the following principles:

· The primary aim of the interface is to enable the users to find the information they require, quickly and easily.

· A relevant and informative title or description should be clearly located and presented to provide the user with an explanation of what is displayed.

· The location, layout, and order in which information is displayed should appear to be logical; for example, menus should be organized by probable sequence of selection.

· The color of the foreground and background should differ significantly. The choice of colors is extremely important, especially when users are likely to spend lengthy periods of time looking at the screen. Effective use of colors can greatly enhance visual design by:

· Drawing attention to different parts of the screen

· Highlighting important information

· Separating different types of information.

· The use of color should be only as an enhancing, secondary form of information.

· The size of the characters on the screen should be readable.

· To increase both speed and efficiency of interactions, it should be obvious to users:

· Where the information should be entered on the screen

· The format in which this information should be entered.

· Where the user overwrites information on the screen, the system should clear the previous information.

3.1.2 Consistency

Consistency concerns creating and reinforcing user expectations by maintaining predictability across the entire interface.

· Colors should be used consistently throughout the system. For example, errors should always be highlighted in the same color.

· Icons and symbols should be used consistently throughout the system so users can learn to recognize them quickly and accurately.

· Menus, messages, and titles should be displayed in the same location on the screen and in the same layout so users can recognize and respond to information quickly.

· The method of entering information should be consistent throughout the system as well as the format in which the users enter particular types of information on the screen, in order to increase the speed of information entry.

· Similar operation sequences, such as updating and deleting information, should require a similar set of actions. This saves the users extra learning time, reduces potential errors, and increases the speed of interaction.

· The system should respond consistently to similar user actions.

3.1.3 Compatibility

Compatibility ensures the user interface conforms to user expectations.

· Where abbreviations and codes are displayed, they should be easy to recognize and understand.

· All terminology used within the system should be familiar to the user in order to avoid unnecessary confusion.

· The sequence of activities required to complete a task should follow what the user would expect according to the requirements specification.

· Access to common, basic operations should be provided through single-click interaction.

3.1.4 Informative Feedback

Informative feedback ensures the user is given clear information about where they are in the system, what actions they have taken, whether these actions have been successful, and what actions should be taken next.

· Instructions and messages displayed by the system should be concise in order to save users from having to read through unnecessary material.

· The language used in the instructions and messages should be appropriate to the users, phrased positively, and indicative of what to do, rather than what to avoid.

· It should be made clear what the user needs to do to take a particular action at any stage, what information the user should enter, and what changes occur on the screen as a result of a user action or input.

· There should always be an appropriate system response to a user action as well as an indication that the action has been completed successfully or unsuccessfully.

· Status messages are very important, particularly with respect to lengthy system response times, and therefore should be used whenever appropriate.

3.1.5 Appropriate Functionality

Appropriate functionality concerns the user’s perceived requirements of the interface when carrying out a task.

· Each screen should provide all the information the user requires at that stage of the task.

· Users should be provided with all the options they feel are necessary at any particular stage in a task.

· Users should be able to access all the information they feel they need for the current task.

· The system feedback should be appropriate for the task.

· Where users are presented with a list of options, it should be clear what each option means.

· It should be clear why the series of screens are sequenced as they are.

3.1.6 Error Prevention and Correction

Error prevention and correction aims to reduce the likelihood of errors on the part of the user, and to ensure those that do occur are rectified before they cause problems.

· The system should validate user inputs before further processing is carried out.

· Where possible, a drop-down list should be used to ensure data entry of valid values.

· Where possible user actions are not easily reversible, confirmation requests should be made.

· Error recovery should be made as easy as possible.

· The system should prompt for input until it is fully valid.

· If the input is of a kind that cannot be validated, the user must be able to check the input before it is processed.

· The system must prevent unauthorized user actions.

· The system must ensure users double-check any requested actions that may be catastrophic if requested unintentionally.

3.2 GUI Development Guidelines

The following sections define a standard layout and guidelines for the Java GUI. The TEAAS development team will use these guidelines to create GUI screens that have a standard look and feel.

3.2.1 Windows

Below is an example application window:

[image: image2.png]8 =] B

D/BRES S

[Inventoried Route

County Inventoried Rte D Milepost Begin
[=] |]]

[Intersection

Intersection Milepost [|
IntersectingRte D [|
Intersecting Rte Milepost || [Loop Condition
IersectionType | <]
Next Feature Direction [v|

- Last Update
User William 5. Burroughs Date/Time |2 August. 1897 2:50 PM|

HE s

Each topic of the application will have a Java frame as its navigational entry point. Each frame will be created from a Java class. Where appropriate, new frames should inherit from the base class com.sun.java.swing.JFrame.

3.2.2 Title

Each window’s visible title should be in the format: TEAAS – {Grouping} – {Screen Topic}

3.2.3 Layout

XY Layout should not be used when designing the GUI screens. Any of the other layouts are acceptable to use in trying to create the desired window look and feel. Vertical Flow Layout and Flow Layout, in combination with Jpanels, have proven to be the most effective.

Windows should have their data divided into logical groupings based upon the topic being displayed. If the data contains Inventoried Route information, the data pertaining to the Inventoried Route should be placed in a groupbox labeled “Inventoried Route” immediately below the toolbar. Other information should be grouped in an appropriately titled groupbox below the Inventoried Route information. The Intersection screen shown above provides an example.

Labels listed vertically should be right aligned, with their text right aligned as well. Text boxes/data items listed vertically should be left aligned, with their text also left aligned. Labels should be horizontally aligned with their corresponding data items. Text boxes listed horizontally should be bottom aligned. The corresponding horizontal labels should be bottom aligned with each other, and centered above the text box they describe. Labels should not contain an ending colon.

3.2.4 Color

All screens should have a background color of Control. Label text should be Active Control. Button text and text field text should be Black. Text boxes should have a background color of White. When a text box is disabled due to security, conditional logic, or some other reason, its background should be set to Light Gray.

3.2.5 Font

Cross-platform Java programs support only five built-in fonts. These are Courier, Dialog, Helvetica, Symbol, and Times New Roman. The fonts for user interface items should be Dialog. Labels should use standard Dialog 16. Text boxes, combo boxes, and lists should use standard Dialog 15. Buttons should use bold Dialog 16.

3.2.6 Buttons

Swing, the Java Foundation Classes, support very customizable buttons. They are capable of displaying an image icon, text, and tool tip text. Tool tip text is simply a hint that appears when the mouse highlights the button. Buttons should display any icon image at the top with accompanying text underneath. If there is no icon image, text should appear centered vertically and horizontally.

3.2.7 Radio Buttons

Radio buttons should always have a default value. This value should be the first member of the radio group.

3.2.8 Components

Wherever possible, GUI components should come from the com.sun.java.swing library available on the Jbuilder component palette under the tabs Swing and Swing Containers. Only if a component is not available in this library should components from other libraries be used. Component names should follow the Java Naming Conventions outlined later in this document and consist of a descriptive name plus the naming suffix listed in the following table. The following table only summarizes the most commonly used components. Developers are not limited to using these components exclusively:

Component
Library
Naming Suffix
Example Name

Jbutton
com.sun.java.swing
Jbtn
OkJbtn

JradioButton
com.sun.java.swing
Jrdobtn
SameJrdobtn

JCheckBox
com.sun.java.swing
Jchk
YesNoJchk

Jlabel
com.sun.java.swing
Jlbl
MilepostNumJlbl

JtextField
com.sun.java.swing
Jtxt
StreetNmJtxt

JpasswordField
com.sun.java.swing
Jpwd
PassJpwd

JcomboBox
com.sun.java.swing
Jcbx
CountyJcbx

Jlist
com.sun.java.swing
Jlst
DirectionJlst

Jpanel
com.sun.java.swing
Jpnl
panel1Jpnl

GroupBox
borland.jbcl.control
Gpbx
groupbox1Gpbx

Jtable
com.sun.java.swing
Jtbl
countyJtbl

JtabbedPane
com.sun.java.swing
Jtbpne
intersectionJtbpne

JScrollPane
com.sun.java.swing
Jsclpne
userRoleJsclpne

3.2.9 Tab Navigation

Navigation should be achieved through the use of the tab key as well as through the mouse. Tabbing should move from top to bottom and left to right.

3.2.10 Menus

[image: image3.png]Edit Help

The menubar will have the following standard menus defined:

· Edit

-
Shortcut key is Alt+E.

· Help

-
Shortcut key is Alt+H.

Any additional menus should be developed using default fonts and text size, to match the currently defined menus.

3.2.10.1 Edit Menu

[image: image4.png]Edit_| Help
New cCul+n
Modty Ctil+M
Delete Cirl+-D
s Cul+s
Cancel Curl+L
Search Ctl+E
Ext culeX

The Edit menu will consist of the following menu items:

· New

-
Add a new record. Shortcut key is ctrl+N.

· Modify
-
Modify an existing record. Shortcut key is ctrl+M.

· Save

-
Save changes that have been made. Shortcut key is ctrl+S.

· Delete
-
Delete a record. Shortcut key is ctrl+D.

· Cancel
-
Cancel the current action. Shortcut key is ctrl+L.

· Search
-
Search for a particular record/recordset. Shortcut key is ctrl+E.

· Exit

-
Exit the current screen. Shortcut key is ctrl+X.

3.2.10.2 Help Menu

[image: image5.png]Edit

wt Cti+A

The Help menu will consist of the following menu item:

· About -
Displays the application “About Box”. Shortcut key is ctrl+A.

3.2.11 Toolbars

Each TEAAS screen, depending on its functionality, will have one or more of the following toolbars.

3.2.11.1 System Toolbar

The system toolbar will be located at the top of each screen, immediately below the menu bar. It will appear as follows:

[image: image6.png]I~ Il

The system toolbar will consist of the following buttons:

·
[image: image7.png]

Add

-
Add a new record.

·
[image: image8.png]

Modify
-
Modify the current record.

·
[image: image9.png]

Save
-
Commit changes that have been made.

·
[image: image10.png]

Delete
-
Delete the current record.

·
[image: image11.png]

Cancel
-
Rollback the current transaction.

·
[image: image12.png]

Search
-
Search for a record/record set.

·
[image: image13.png]

Exit

-
Exit the current screen.

3.2.11.2 Navigation Toolbar

The navigation toolbar will be located at the bottom left of each screen that has records to be scrolled through. It will be painted as follows:

[image: image14.png][[« ety][] [1]

The navigation toolbar will consist of the following buttons:

·
[image: image15.png]

 First

-
Move to the first record in the displayed record set.

·
[image: image16.png]

 Previous

-
Move to the previous record in the displayed record set.

·
[image: image17.png]

 Next

-
Move to the next record in the displayed record set.

·
[image: image18.png]»

 Last

-
Move to the last record in the displayed record set.

·
[image: image19.png]KofY

 Record number
-
Placement of the displayed record in the record set.

3.2.12 Audit Groupbox

Each screen that displays a record or record set will contain a group box displaying the last user to edit that particular record and the date/time that the edit occurred. The groupbox will appear as follows:

[image: image20.png]Last Update
’V User Name Date/Time Date/Time:

All fonts, alignment, and colors are consistent with other elements of the window.

3.2.13 Error Dialog Boxes

The user interface for error messages that are informational, and will allow the user to continue without necessarily taking any corrective action are as follows:

[image: image21.png]TEAAS

@ *Error Message.”

Conective actian.

If the user must take a corrective action in order to continue, the dialog box should look as follows:

[image: image22.png]TEAAS

@ *Error Message.”

Conective actian.

In both instances, “Error Message” should be the standard error that has occurred, and, where appropriate, “Corrective Action” should outline steps the user can or must take to correct the error.

4 ERROR HANDLING STRATEGIES

The objective of the error handling strategy is to have a common understanding and consistent way of handling errors in TEAAS. This section will establish the standards for communicating errors and other application dialogs to the user.

TEAAS will always display an application-specific message to the user rather than passing the error message from the underlying platform or tool where the error occurred. The application error message will contain more meaningful information for the user than errors passed directly from the platform or tool in which the error occurred. The platform or tool-specific message should be captured and logged for problem resolution.

The following sections establish the standards for handling errors once they are trapped. The way in which errors and exceptions are trapped is tool-specific and is not discussed here.

4.1 Message Types

Messages can be broadly classified into:

· Error messages

· Override messages

· Debug messages.

4.1.1 Error Messages

Error messages are displayed when there is a system/application failure or bug, or when a particular user action cannot be performed at that stage. After an error message is displayed, the application waits for user input (the user is given a single option). After receiving the user input, the application aborts the current operation and the control returns to the closest point where the user can perform further actions. Messages under this category should have an associated error code and should not be hard-coded in programs.

4.1.2 Override Messages

Override messages are dialogs that require the user to choose from one of many options available. Further processing continues depending on the option chosen. Messages under this category should have an associated error code and should not be hard-coded in programs.

4.1.3 Debug Messages

Debug messages are similar to error messages, but in this case the processing continues after displaying the message. These messages are used for debugging by the developers. There should be a mechanism to toggle the display of these messages, which can be hard-coded in programs.

4.2 Batch Processing Errors

During batch processing, if a particular exception condition in a business rule is encountered, processing can either continue after logging it as an exception, or processing can completely stop. This kind of decision-making should be data driven and be kept at an error code level rather than built into the business rule logic. A particular condition that might require user intervention can be handled online by giving that option to the user. However, during batch processing, the following actions can be taken:

· The error is ignored.

· The error is logged and processing continues.

· Processing stops.

Therefore, every error should also have an associated error type for batch processing. The error type will identify the action to be taken when the error occurs.

4.3 Error Codes

Error codes will be unique, and, to some extent, indicate in which part of the application the error has occurred. The format for the error code is DOT-TEAAS-modulename-serialnumber.

Example:
DOT-TEAAS-MP-01

Most error codes, along with their associated error messages, will be stored in the database. The following are the error message details that will be stored in the database:

· Error code

· Error message

· Online message type (e.g., error, override)

· Batch message type (e.g., ignore, log, stop).

4.4 Error Messages

Error messages should be simple and easy to understand. Only business terms and terminology should be used in the error messages. Technical terms should not be used. For example, if you are searching for a feature (“F1”) and it is not found on an inventoried route (“R1”), the error message should be:

"F1 is not maintained as a feature on route R1."

And not:

"Row F1 not found in database"

"F1 not found under R1"

"F1 missing"

Error messages should be made up of error text and error parameters. This will facilitate building a common error object to which the error code and error parameters can be passed. The error object will build, display, and accept user input for the error message.

For the above example, the actual message stored in the database will be:

$1 is not maintained as a feature on route $2

Let the error code be DOT-TEAAS-FM01

The program that encounters this error will call the error object and pass to it the parameters “DOT-TEAAS-FM01”, “F1”, and “R1”. The error object takes care of retrieving the message text from the database, sizing the display window, displaying the message and taking the user input.

4.5 Error Log

Validation errors and overrides that are encountered during online functions need not be logged. Those encountered during batch processing (depending on type) should be logged into a database table that will be available for this purpose. Security violations will also be logged.

4.6 Reporting

A report will be provided to print out all logged errors and an option will be provided to purge the table of accumulated errors, in order to free disk space.

4.7 Tracing

Java error trace files should be created on the machine where the error occurs, and a link to the trace file should be maintained in the log. The location where error trace files are created should be set up as a parameter on individual machines. Tracing should be done only for application bugs, runtime errors, and exceptions, and not if any business rule validation fails.

5 EXECUTION ENVIRONMENT STANDARDS

The objective of these standards is to define the structure for TEAAS application components installed to the runtime (production) environment. These standards, when defined and adhered to, will facilitate easier system maintenance and management.

5.1 Directory Structure

This section specifies the directory structure that should be adhered to in the different physical machines on which the application components will be installed.

5.1.1 Client

Each client workstation will require the following:

· Java runtime environment

· Java language class libraries

· VisiBroker class libraries

· Any other applicable GUI class libraries (e.g., Java Beans Component Library, KL Group)

· Application GUI as Java classes

· Help files.

All class libraries should be packaged as Java archive (JAR) files with the file extension .jar. These JAR files, apart from holding all the class files, will also contain any image files incorporated during development. No specific class file will be present in more than one JAR file. The source files (*.java) will not be made available in the client machines.

These components will be organized in the client workstations using the following directory structure:

Root Directory
Subdirectory
Directory Content

TEAAS
bin
java.exe, jre.exe, javaw.exe, and/or jrew.exe

lib
All non-TEAAS-specific JAR files

app
All TEAAS-specific JAR files

docs
TEAAS-related documentation

The TEAAS root directory will contain TEAAS.bat, a batch file used to start the TEAAS application client.

The clients will require VisiBroker Naming and Location services provided by the OSAGENT, which can be run either on each and every client or from a single location on the local network. Further study will be conducted to decide which option to use.

If the dynamic method of invoking objects is used, an Interface Repository may be required on the client workstations.

5.1.2 Application Server

The application server should contain the following:

· Java runtime environment

· Java language class libraries

· VisiBroker class libraries

· Application business rules and data access components as Java classes.

All class files should be packaged within JAR files. No specific class file will be present in more than one JAR file. The source files (*.java) will not be made available in the application servers.

These components will be organized in the application servers using the following directory structure:

Root Directory
Subdirectory
Directory Content

TEAAS
bin
java.exe, jre.exe, javaw.exe, and/or jrew.exe

lib
All non-TEAAS-specific JAR files

app
All TEAAS-specific JAR files

The TEAAS root directory will contain TEAAS.bat, a batch file used to start the TEAAS application server.

There are two ways to invoke the server objects:

· When bringing up the application server, activate all objects and make them wait for requests.

· Activate objects only on demand. For this, Object Activation Daemon (OAD) should be run on the server.

The second approach will be employed by this project.

5.1.3 Database Server

An Oracle8 database consisting of application data and Oracle8 system data might contain many tablespaces. Standards will be established for the following tablespaces only:

· TEAAS – Application data storage

· SYSTEM – Default Oracle8 system tablespace

· INDX – Application data table indexes

· RBS – Rollback segments.

All of the above-mentioned tablespaces should be created, thereby ensuring that they do not share the same physical *.dbf file.

To improve performance by reducing contention for input/output devices, it is recommended these tablespaces be kept on separate disks. If more than one *.dbf file is placed on the same disk, they should be under the same directory. This will enable easy offline (cold) backups.

5.2 Application Packaging

TEAAS application packaging can be classified into the following categories:

· Client – TEAAS client installation

· Server – TEAAS server installation

· Conversion – All conversion-related programs and data

· Data – TEAAS Oracle8 database Data Definition Language (DDL) scripts.

Of the above, conversion and data will not be required as packages in the execution environment. TEAAS application packaging should be performed assuming that a converted Oracle8 database is available.

The client and server portions of TEAAS should be provided as self-extracting *.exe files for the Win32 environment. Packaging should adhere to the above-specified directory structures. The TEAAS directory should be created under the directory on which the self-extracting executable is run. The batch files provided to run TEAAS should only have relative paths (e.g., ./TEAAS/app/mp.jar) and not absolute paths.

5.3 Application Upgrade Strategy

With the advance of client/server computing, application upgrades have become increasingly difficult. They can be difficult to coordinate, particularly when changes are made to the client portion of the system. The Deployment Server for Java (DSJ) simplifies this process by centrally locating the Java class files on the server rather than on each individual client. The following sections provide high-level procedures that should be followed in the event that a DSJ is not used.

5.3.1 DDL Changes

The following steps should be followed when implementing a DDL code change:

· Create a *.cnv (convert) file with the necessary Structured Query Language (SQL) commands for effecting the change.

· Ensure that all users are logged out of the system.

· Backup the database.

· Execute the script.

5.3.2 Source Code Changes

The following steps should be followed when implementing a source code change on the client or server:

· Identify all *.class file(s) that will require changes.

· Identify all JAR file(s) that will have to be rebuilt.

· Make changes to appropriate source file(s).

· Rebuild any/all JAR file(s).

· Replace the existing JAR file(s) with the new ones.

If the client source code is changed, the JAR files should be replaced in every client machine. If the server source code has changed, JAR files in all the application server machines should be replaced.

6 Database Locking Strategies

Database locking strategies and transaction processing/control play an important role in the development of any client/server application. They are important to maintaining data integrity and keeping the database in a consistent state at all times. The objective of these strategies is to have consistent methods that will be adhered to throughout the Software Development Life Cycle, and during the construction phase in particular. The following discussions assume that Java Database Connectivity (JDBC) is being used as the middleware between the data access components and the Oracle8 database.

6.1 Updates in TEAAS

Concurrency and multi-user environment issues must be addressed for the following update functions to be provided in TEAAS:

· Update of Features

· Update of lookup tables (Road Names and Alternate Road Names are the only tables identified as editable lookups)

· Milepost accidents.

Updates to Features and lookup tables potentially result in updates of multiple accident records. The new Crash System will also have the capability of updating accidents. The locking strategy specified in the following sections will be coordinated with the Crash development team.

The above updates can be classified into two categories: online and batch. For the purposes of this document, the update of a single row is considered an online update; and update of a set of rows is considered a batch update. The following sections describe the database locking strategies to be used for each situation.

6.2 Online Updates

While performing any online updates, the following steps should be adhered to:

1) When a connection to a data source is made using JDBC, the Auto-Commit mode on the connection is set to "TRUE". Each and every SQL statement is committed to the database when it is executed. Transaction processing is not easy in this mode. Hence, the first thing to be done on getting a connection is to set the Auto-Commit mode to "FALSE". This can be achieved by using the following statement:

MyConnection.setAutoCommit(FALSE);

Where MyConnection is the connection object and setAutoCommit is a public method in the Connection interface.

2) When a row must be updated by an online modify function, the row should be locked prior to actual modification and the update. This should be done after the user selects the modify function on an object. The row on which the lock is obtained should be presented to the user for the change operation. The lock can be obtained by checking for the concurrency updateable field of the result-set object:

IF MYRESULTSET.CONCUR_UPDATEABLE=0 THEN

 statements;

The logic should issue a rollback command and return an error message to the client specifying that the modify operation could not be completed and should be tried again later.

3) Ensure the lock is released, either with a COMMIT if the user chooses to save the changes, or with a ROLLBACK if the user cancels the changes.

6.3 Batch Updates

The reason for adopting different locking strategies for batch and online updates is to improve performance and simplify implementation. If an update of 1,000 accident records is required during a single process, it is not preferable to lock each and every record for update or keep trying until a full updateable result set is obtained. The application should be built with the intelligence to know that when one accident update process is running, other accident update processes will be temporarily disallowed. Any process that is updating accidents is ensured that no other process is performing an update and can proceed without explicit locking of rows.

A commit frequency will also be established to commit the optimum number of times, depending on the number of rows to be updated. This will decrease the usage of Oracle’s System Global Area and the rollback segments.

As mentioned earlier, online update of Features or lookup tables can result in a requirement to update multiple accident records. This event can be called "Maintenance Resolution" (i.e., resolving the maintenance that has taken place). All Maintenance Resolution will be performed as an automatic, periodic batch update process.

6.4 Deadlocks

At this stage there are no business situations where deadlocks can occur. However, if a possibility of deadlocks arises, they can be prevented using consistent locking strategies. In a hypothetical example, there are two different processes (“P1” and “P2”) that update both Features and Accidents (“F1” and “A1”). In such a scenario, a deadlock occurs if P1 locks F1 and is waiting to lock A1; and at the same time P2 has locked A1 and is waiting for F1 to be released. This will not occur if the locking approach is consistent across the application and if the processes do not wait. The following standards will be used to avoid deadlock:

· The parent/master table must be locked before locking the child/detail table.

· The transaction must be rolled back if a lock is not obtainable.

7 Java Coding Standards

This section defines a standard layout and guidelines for Java source code. The TEAAS development team will use these Java coding standards to create code that has a standard structure and style. This will improve the readability of the program code and result in precise and unambiguous source code that is easily understood and maintained. Consistency of source code layout is vital for smooth development when there are multiple application programmers.

7.1 Source Files

Java source files will consist of a single public class or interface. If a private class or interface is associated with a public class, it may be put in the same source file as its associated public class. The public class or interface should always be placed first in the file.

All Java source files should consist of the following three sections, in the order they are described.

7.1.1 Heading Comments

All source files will begin with a heading comment that contains the following information:

/* Title: <classname>

 * Version: <#>

 * Date: <mm.dd.ccyy>

 * Copyright: Copyright (c) <year>

 * Author: <programmer’s name>

 * Company: Keane, Inc.

 * Description: <A brief description of the program’s

 * purpose.>

 */

7.1.2 Package and Import Statements

Package and import statements will directly follow the heading comments.

7.1.3 Class and Interface Declarations

Class and interface declarations should consist of the following parts, in the following order:

Part
Description

Class or interface definition statement
Class or interface identifier and options (for example, class modifier, superclasses, interfaces).

Implementation comment
Any class or interface information that was not appropriate for the documentation comment.

Class variables
Public class variables, then protected class variables, and finally private class variables.

Instance variables
Public class variables, then protected class variables, and finally private class variables.

Constructors
Used to instantiate objects from the class.

Methods
Methods should be grouped according to functionality. Wherever possible, the calling method should be placed before the called method.

7.2 Formatting

A consistent code format style improves code readability, maintainability, and robustness.

7.2.1 Indentation

Each indent level is exactly four spaces. If using tabs, ensure that the tab is set at four spaces.

7.2.2 Line Length

Avoid lines longer than 80 characters.

7.2.3 Line Wrapping

When an expression will not fit on a single line, it should be broken up according to the following guidelines:

· Break after a comma

· Break before an operator

· Align the new line with the beginning of the expression at the same level on the previous line.

7.2.4 Blank Lines

Blank lines should be used to improve the readability of sections of source code. Two blank lines should be used to separate sections of a source file and to separate class and interface definitions.

One blank line should be used between methods, local variables in a method and the method’s first statement, preceding a block or single-line comment, and between logical sections inside a method.

7.2.5 Blank Spaces

Blank spaces should be used in the following circumstances:

· A keyword followed by a parenthesis should be separated by a space

· After commas in argument lists

· After all binary operators except “.”

Examples:
x += y + z

v = (w + x) / (y * z)

while (d++ = s++)

· Between expressions in a FOR statement

· After casts.

7.3 Source Code Documentation

Comments should be used to give overviews of code and provide additional information that is not readily available in the code itself. Comments should contain only information that is relevant to reading and understanding the program. For example, information about how the corresponding package is built, or in what directory it resides should not be included as a comment. Information that is clear from the code should not be included in the comments. In general, comments that are likely to become obsolete as the code evolves should be avoided.

Comments will not be enclosed in large boxes drawn with asterisks or other characters. Comments should never include special characters such as form-feed and backspace.

7.3.1 Block Comments

Block comments are delimited by “/*” and “*/”. They should be used to provide descriptions of files, methods, data structures, and algorithms. They should be used at the beginning of each file and before each method. When they are used inside a method, they should be indented to the same level as the code they are describing. A blank line should precede them in order to separate them from the rest of the code.

Block comments should also be used to document out (i.e., remark out) lines of code that are no longer applicable, but the developer wants to keep; or when temporarily commenting out code during debugging.

Example:
/*

 * This is an

 * example of

 * a block comment.

 */

7.3.2 Single-line Comments

Single-line comments are preceded by “// ” and appear on a single line, indented to the level of the code that follows. If a comment cannot be written on a single line, it should follow the block comment format. A blank line should precede single-line comments. Single-line comments should be used within member methods to document business logic, sections of code, and declarations of variables.

Example:
If (condition)

{

 //Single-line comment.

 …

}

7.3.3 Trailing Comments

Short comments can be placed on the same line as the code that they describe. They should be delimited by “//”, and shifted far enough to be separated from the statements. If more than one trailing comment is present in a section of code, they should all be indented to the same setting.

7.3.4 What to Document

The following table summarizes the recommended use of documentation for each portion of Java code.

Item
What to Document

Arguments/Parameters

· The type of the parameter

· For what it should be used

· Restrictions or preconditions

· Examples

Fields/Properties
· Description

· All applicable invariants

· Concurrency issues

· Visibility decisions

· Examples

Classes
· The purpose of the class

· Known bugs

· The development/maintenance history of the class

· Applicable invariants

· The concurrency strategy

Compilation Units
· Each class/interface defined in the class, including a brief description

· The file name and/or identifying information

· Copyright information

Interfaces
· Purpose

· How it should and should not be used

Local variables
· Use/purpose

· The units of numeric data

· The range of allowable numeric values

Methods

· What and why the method does what it does

· Input and output variables

· Local variables

· Interface assumptions (accuracy of results, etc.)

· Global effects

· Sources of algorithms used

· Control structures

Package
· The rationale for the package

· The classes in the package

7.4 Naming Conventions

All interface, class, variable, method, and package names must convey the design idea, enhance readability, and facilitate code reuse. The TEAAS project, where possible, will adhere to the Java naming conventions as outlined by Sun Microsystems’ The Java Language Specification. If a particular item is not documented here, refer to the above document.

Short forms or abbreviations should be avoided unless the name is very long (over 15 characters), or the abbreviation is more widely used than the long form. If short forms are to be used, they should be used consistently throughout the code.

The following sections outline conventions to be used for the TEAAS project.

7.4.1 Packages

According to the Java specification, published package names should be unique. Packages should be created for a group of related functionality, a sub-system, or a self-contained project. TEAAS components have the potential of being widely distributed, especially if the components are used on the World Wide Web (WWW). Taking this into consideration, the TEAAS components will be named according to the WWW conventions. Because the WWW naming convention for the North Carolina Department of Transportation is www.dot.state.nc.us, packages used in TEAAS will have the following name format:

US.nc.state.dot.teaas.packagename

The packagename will identify the package uniquely within TEAAS and will be in lowercase.

Example:
US.nc.state.dot.teaas.milepost

7.4.2 Classes and Interfaces

Mixed case should be used for interface and class names. The first letter of the identifier and all subsequent internal words will be capitalized. Names should be nouns that are simple and descriptive. Acronyms and abbreviations should be avoided.

Examples:
Milepost

CountyRouteFeatures

Accidents

CountyRouteCharacteristics

Interface type names name will be a descriptive noun or noun phrase when an interface is used as an abstract superclass. The name can also be an adjective describing a behavior for interfaces.

Examples:
US.nc.state.dot.teaas.MilepostInput

US.nc.state.dot.teaas.MilepostOutput

US.nc.state.dot.teaas.Recodable

7.4.3 Methods

Method names will use mixed case beginning with a lowercase letter. Internal words will be separated by capital letters. Method names should be verbs that are descriptive of the action the method carries out. The additional conventions for method names are as follows:

· Methods to get and set an attribute that might be thought of as variable “V” will be named getV and setV.

Examples:
getFeatureData

setFeatureData

· A method that returns the distance between two points will be named distance.

· A method that tests the Boolean condition “V” about an object will be named isV.

Example:
isAmbulanceRequested

· A method that converts its object to a particular format “F” will be named toF.

Example:
toYard

The names of methods in a new class, when possible and appropriate, will be named as per existing Java Application Program Interface (API) class methods.

7.4.4 Variables and Parameters

Field names declared within the scope of public, protected, or private methods will use mixed case beginning with a lowercase letter. Internal words will be separated by capital letters. The name chosen should clearly represent the content of the field.

Examples:
restrictions

accidents

licenseNumber

impactSpeed

damageAmount

All class private variables should be named following the same conventions as method variables, with the addition of a “c_” prefix.

Examples:
c_zipCode

c_firstName

Local variable and parameter names should be short, meaningful names. They can also be a short sequence of lowercase letters that are not words. Here are some examples:

· Acronyms – mp for a variable holding a reference to a milepost

· Abbreviations – cnt for a counter of some kind

· Mnemonic terms – in, out, off, len
One-character local variable or parameter names should be avoided, except for temporary and looping variables, or where a variable holds an undistinguished value of a type. Conventional one-character names are:

Variable Type
Character

Byte
b

Char
c

Double
d

Exception
e

float
f

integers
i, j, and k

long
l

object
o

string
s

arbitrary value of some type
v

Local variable or parameter names that consist of only two or three uppercase letters will be avoided to prevent potential conflicts with the initial country codes and domain names that are the first component of unique package names.

7.4.5 Constants

The names of final variables of class types and constants in interface types will be a sequence of one or more uppercase words, acronyms, or abbreviations, with components separated by underscore characters.

Examples:
MIN_VALUE

MAX_VALUE

A group of constants that represent alternative values of a set, and masking bits in an integer value, will be specified with a common acronym as a name prefix.

Example:
interface ProcessStates

{

 int PS_RUNNING = 0;

 int PS_SUSPENDED = 1;

}

7.4.6 File Names

File names will be descriptive nouns or noun phrases, in mixed case, followed by a period and a file type suffix. The names of files containing classes are dictated by the class names.

Examples:
Milepost.java

CountyRouteFeature.java

help.gif

7.5 Declarations

Declarations should be made one per line. Variables and methods should never be declared on the same line. Different types of variables will be declared on separate lines. Declarations should be made only at the beginning of blocks, with a block being any code surrounded by curly braces “{ … }”. The only exception to this rule is indexes of FOR loops, which in Java can be declared in the FOR statement.

Local declarations that hide declarations at higher levels should be avoided. For example, the same variable name should not be declared in an inner block.

Local variables should be initialized where they are declared. The only exception to this is when the initial value of a variable is dependent on some computation occurring first. This should be documented where the variable would have been initialized. Assigning several variables to the same value in a single statement should be avoided. The assignment operator should not be used in a place where it can be confused with the equality operator.

When declaring classes and interfaces, a space should not be used between a method name and the parenthesis starting its parameter list. An open brace “{” should appear at the beginning of the line immediately after the declaration statement. A closing brace “}” should start a line by itself, indented to match its corresponding opening statement. When it is a null statement, the closing brace should appear immediately after the opening brace. In declarations, methods should always be separated by a blank line.

7.6 Simple Statements

There should only be one statement per line. Operators should not be used to group multiple statements on a single line.

7.7 Compound Statements

Compound statements contain a list of statements enclosed by braces. They should all adhere to the following general rules:

· The enclosed statements should be indented one level beyond the compound statement.

· The opening brace should be on the next line that begins the compound statement.

· The closing brace should begin a line and be indented to the beginning of the compound statement.

· Braces should be used around all statements, even simple statements, when they are part of a control structure.

The following table contains examples of the various types of compound statements.

Control Structure
Example

if
if (condition)

{

 statements;

}

if-else
if (condition)

{

 statements;

}

else

{

 statements;

}

if-else-if-else
if (condition)

{

 statements;

}

else if (condition)

{

 statements;

}

else if (condition)

{

 statements;

}

for
for (initialization; condition; update)

{

 statements;

}

while
while (condition)

{

 statements;

}

do-while
do

{

 statements;

} while (condition);

switch
switch (condition)

{

case A:

 statements;

 /* Every time a case falls through (does not

 * contain a break statement), add a comment

 * where the break statement would

 * normally be.

 */

case B:

 statements;

 break;

case C:

 statements;

 break;

default:

 /* Every switch should include

 * a default case.

 */

 statements;

 break;

}

try-catch
try

{

 statements;

}

catch (ExceptionClass e)

{

 statements;

}

8 SQL CoDING STANDARDS

This section defines a standard layout and guidelines for SQL code. SQL coding standards are used to create code that has a standard structure and style. This will improve the readability of program code and result in precise and unambiguous code that is easily understood and maintained. Code consistency is vital for smooth development when there are multiple application programmers.

8.1 Formatting

A consistent code format style improves code readability, maintainability, and robustness.

8.1.1 Capitalization

There are two types of text used in SQL statements: reserved words and application-specific names or identifiers.

Reserved words are names of language elements that are reserved by SQL and have a special meaning for the compiler. To improve readability, reserved words should be uppercase.

Examples:
SELECT

FROM

WHERE

TO_DATE()

SUM()

Application-specific identifiers are the names given to data and program structures specific to TEAAS. These identifiers should be lowercase.

Example:
SELECT

 SUM(unt_tot_prsn_cnt)

FROM unit

WHERE

 acdnt_case_nbr = ‘12345’;

8.1.2 Indentation

Each indent level should be exactly four spaces. Formatting using tabs is not recommended.

8.1.3 Line Length

Lines longer than 80 characters should be avoided.

Line Breaks

SQL statements have the following basic format:

SELECT

 columns
FROM table
WHERE

 condition;

Each of these expressions should be aligned at the same level. When an expression will not fit on a single line, it should be broken up according to the following guidelines:

· Break after a comma

· Break before an operator

· Break before additional conditions

· Align subsequent lines of the same expression at the next indent level.

Example:
SELECT

 veh_yr, veh_mk_nm, reg_yr_cd, veh_dmg_amt,

 veh_rlvr_cd, veh_drvblty_cd

FROM unit

WHERE

 acdnt_case_nbr = ‘12345’

 AND unt_nbr = ‘1’;

8.1.4 Blank Lines

Blank lines should be used to improve the readability of sections of code. Two blank lines should be used to separate sections of code.

8.1.5 Blank Spaces

Blank spaces should be used in the following circumstances:

· To separate a keyword followed by a parenthesis
· After commas in argument lists

· On either side of all math and relational operators.

Example:
SELECT

 unt_a_injry_cnt + unt_b_injry_cnt + unt_c_injry_cnt

 AS total_injuries

FROM unit

WHERE

 acdnt_case_nbr = ‘12345’

 AND unt_nbr = ‘1’;

8.2 Aliases

Table aliases should be the first letter of the table being referenced. Column aliases should communicate the content of the column.

Example:
SELECT

 acdnt_case_nbr,

 unt_a_injry_cnt + unt_b_injry_cnt + unt_c_injry_cnt

 AS total_injuries

FROM accident a, unit u

WHERE

 a.acdnt_case_nbr = u.acdnt_case_nbr

 AND acdnt_case_nbr = ‘12345’

 AND unt_nbr = ‘1’;

8.3 Comments

Comments should be used to give overviews of code and provide additional information that is not readily available in the code itself. Comments should contain only information that is relevant to reading and understanding the program. Information that is clear from the code should not be duplicated in the comments. In general, comments that are likely to become obsolete as the code evolves should be avoided.

8.3.1 Single-line Comments

A single-line comment is preceded by “ - - ” and does not break to a second line. It may appear on the same line as, and to the right of code; or may be on a line alone just prior to, and indented to the level of the code it comments. If a comment cannot be written on a single line, it should follow the block comment format. When a single-line comment occupies a line alone, a blank line should precede it.

Examples:
SELECT

 unt_a_injry_cnt + unt_b_injry_cnt + unt_c_injry_cnt

 AS total_injuries --does not include fatalities

FROM unit

WHERE

 acdnt_case_nbr = ‘12345’

 AND unt_nbr = ‘1’;

--Query for injuries only (no fatalities).

SELECT

 unt_a_injry_cnt + unt_b_injry_cnt + unt_c_injry_cnt

 AS total_injuries

FROM unit

WHERE

 acdnt_case_nbr = ‘12345’

 AND unt_nbr = ‘1’;

8.3.2 Block Comments

Block comments are delimited by “/*” and “*/”. They should be used to provide descriptions of the purpose of the code. They should be indented to the same level as the code they are describing. A blank line should precede them in order to separate them from the rest of the code.

Block comments should also be used to document out (i.e., comment out) lines of code that are no longer applicable, but the developer wants to keep; or when temporarily commenting out code during debugging.

Example:
/*

This is an

example of

a block comment.

*/

8.4 SQL Script Files

Most SQL used in TEAAS will be embedded within a Java object or PL/SQL code. (PL/SQL is Oracle’s procedural language extension to SQL.) If stand-alone SQL script files are used during the development of the application, they should contain a header that describes the purpose of the script. The following standard header block should be used for TEAAS SQL script files.

/*

File Name: <file name>

Version: <version number>

Date: <mm.dd.ccyy>

Author: <programmer’s name>

Company: Keane, Inc.

Description: <A brief description of the program’s

 purpose.>

*/

9 PL/SQL CoDING STANDARDS

This section defines a standard layout and guidelines for Oracle’s procedural language extension to SQL (PL/SQL). The TEAAS development team will use PL/SQL coding standards to create code that has a standard structure and style. This will improve the readability of program code and result in precise and unambiguous code that is easily understood and maintained. Code consistency is vital for smooth development when there are multiple application programmers.

9.1 File Headers

PL/SQL scripts will be stored as *.sql files with a header that describes the purpose of the script. The following standard header block should be used for TEAAS PL/SQL script files.

/*

File Name: <file name>

Version: <version number>

Date: <mm.dd.ccyy>

Author: <programmer’s name>

Company: Keane, Inc.

Description: <A brief description of the program’s

 purpose.>

*/

9.2 Formatting

A consistent code format style improves code readability, maintainability, and robustness.

9.2.1 Capitalization

There are two types of text used in PL/SQL statements: reserved words and application-specific names or identifiers.

Reserved words are names of language elements that are reserved by SQL or PL/SQL and have a special meaning for the compiler. To improve readability, reserved words should be uppercase.

Examples:
SELECT

TO_DATE()

DECLARE

LOOP

Application-specific identifiers are the names given to data and program structures specific to TEAAS. These identifiers should be lowercase or mixed case, depending on the identifier type.

Example:
DECLARE

 CURSOR structureCur IS

 SELECT

 strctr_id, strctr_typ_cd, strctr_mlpst_nbr

 FROM structure_temp;

 structureRec structureCur%ROWTYPE;

BEGIN

 …

9.2.2 Indentation

Each indent level should be exactly four spaces. Formatting using tabs is not recommended.

9.2.3 Line Length

Lines longer than 80 characters should be avoided.

9.2.4 Line Breaks

Named PL/SQL blocks have the following basic format:

PROCEDURE procedureName

IS

 declarations;
BEGIN

 statements;

EXCEPTION

 exception event

 exception handling;

END;

Unnamed (anonymous) blocks have the following basic format:

DECLARE

 declarations;
BEGIN

 statements;

EXCEPTION

 exception event

 exception handling;

END;

Each of these statements should be aligned at the same level. When a statement will not fit on a single line, it should be broken up according to the following guidelines:

· Break after a comma

· Break before an operator

· Break before additional conditions

· Align subsequent lines of the same expression at the next indent level.

Example:
DECLARE

 CURSOR unitCur IS

 SELECT

 veh_yr, veh_mk_nm, reg_yr_cd, veh_dmg_amt

 FROM unit

 WHERE

 acdnt_case_nbr = ‘12345’

 AND unt_nbr = ‘1’;

 unitRec unitCur%ROWTYPE;

BEGIN

 …

9.2.5 Blank Lines

Blank lines should be used to improve the readability of sections of code. Two blank lines should be used to separate sections of code.

9.2.6 Blank Spaces

Blank spaces should be used in the following circumstances:

· To separate a keyword followed by a parenthesis
· After commas in argument lists

· On either side of all math and relational operators.

9.2.7 Formatting Control Structures

Executable statements contained in control structures are the heart of the logic required to implement processing. Proper formatting improves readability and maintenance of code.

The following table identifies the correct format and indentation for PL/SQL control structures.

Control Structure
Example

IF
IF condition THEN

 statements;

END IF;

IF-ELSE
IF condition THEN

 statements;

ELSE

 statements;

END IF;

IF-ELSIF-ELSE
IF condition THEN

 statements;

ELSIF condition THEN

 statements;

ELSE

 statements;

END IF;

Simple Loop
LOOP

 statements;

END LOOP;

WHILE Loop
WHILE condition
LOOP

 statements;

END LOOP;

Numeric FOR Loop
FOR index IN lowValue .. highValue

LOOP

 statements;

END LOOP;

Cursor FOR Loop
FOR recIndex IN cursorName

LOOP

 statements;

END LOOP;

9.3 Comments

Comments should be used to give overviews of code and provide additional information that is not readily available in the code itself. Comments should contain only information that is relevant to reading and understanding the program. Information that is clear from the code should not be duplicated in the comments. In general, comments that are likely to become obsolete as the code evolves should be avoided.

9.3.1 Single-line Comments

A single-line comment is preceded by “ - - ” and does not break to a second line. It may appear on the same line as, and to the right of code; or may be on a line alone just prior to, and indented to the level of the code it comments. If a comment cannot be written on a single line, it should follow the block comment format. When a single-line comment occupies a line alone, a blank line should precede it.

Examples:
SELECT

 unt_a_injry_cnt + unt_b_injry_cnt + unt_c_injry_cnt

 AS total_injuries --does not include fatalities

FROM unit

WHERE

 acdnt_case_nbr = ‘12345’

 AND unt_nbr = ‘1’;

--Query for injuries only (no fatalities).

SELECT

 unt_a_injry_cnt + unt_b_injry_cnt + unt_c_injry_cnt

 AS total_injuries

FROM unit

WHERE

 acdnt_case_nbr = ‘12345’

 AND unt_nbr = ‘1’;

9.3.2 Block Comments

Block comments are delimited by “/*” and “*/”. They should be used to provide descriptions of the purpose of the code. They should be indented to the same level as the code they are describing. A blank line should precede them in order to separate them from the rest of the code.

Block comments should also be used to document out (i.e., comment out) lines of code that are no longer applicable, but the developer wants to keep; or when temporarily commenting out code during debugging.

Example:
/*

This is an

example of

a block comment.

*/

9.4 Declarations

Declarations should be made one per line with two spaces between the variable name and its datatype. Where variables are declared for data access, the %TYPE and %ROWTYPE attributes will be used to ensure the correct data type is established for the variable.

Example:
DECLARE

 totalInjuries NUMBER;

 totalFatalities NUMBER;

 accidentCase accident.acdnt_case_nbr%TYPE

Local declarations that hide declarations at higher levels should be avoided. For example, the same variable name should not be declared in an inner block.

9.5 Naming Conventions

All variables, constants, cursors, and named blocks must convey the design idea, enhance readability, and facilitate code reuse. Short forms or abbreviations should be avoided unless the name is very long (over 15 characters), or the abbreviation is more widely used than the long form. If short forms are to be used, they should be used consistently throughout the code.

Names should use mixed case beginning with a lowercase letter. Internal words should be separated by capital letters. The name chosen should clearly represent the content of the variable type. Specific guidelines are given in the sections that follow.

9.5.1 Variables

Variable names should represent nouns for character and number datatypes, and a condition for Boolean datatypes.

Example:
DECLARE

 totalInjuries NUMBER;

 accidentCityText VARCHAR2(22);

 spilled BOOLEAN;

9.5.2 Constants

The value for a named constant cannot be changed after initialized at declaration. Constants should use mixed case beginning with the prefix “c”.

Example:
DECLARE

 cAdditionalText CONSTANT CHAR(6) := ‘ TEAAS’;

9.5.3 Cursors

Cursors names will end with the suffix “Cur”.

Example:
DECLARE

 CURSOR vehicleCur IS

 SELECT

 veh_yr, veh_mk_nm, reg_yr_cd, veh_dmg_amt,

 veh_rlvr_cd, veh_drvblty_cd

 FROM unit;

9.5.4 Records

Record structure is defined from the structure of a table or cursor using the %ROWTYPE attribute. Record names will end with the suffix “Rec”.

Example:
DECLARE

 CURSOR trailerCur IS

 SELECT *

 FROM trailer;

 trailerRec trailerCur%ROWTYPE;

 unitRec unt%ROWTYPE;

9.5.5 Named PL/SQL Blocks

PL/SQL block names (procedures, functions, and packages) should be verbs that are descriptive of the action the block carries out.

Examples:
getStreetCode

setPlotQuality

10 Component SPECIFICATION STANDARDS

Consistent and thorough documentation of component design is essential to assure quality software development. The following sections identify the general format and content of component specifications. A component specification template will be created and used by the TEAAS project team to ensure a consistent format.

10.1 Revision History

A revision history will be maintained for each component specification, containing the information in the following table.

Person’s Name
Revision Date
Comments & Reasons

{Author’s Name}
{Date the document was created}
Initial Creation

{Editor’s Name}
{Date the document was edited}
{Reason for modifications}

10.2 Presentation Component

The sections that follow identify the design specification elements for the presentation layer of the application. The presentation layer is the user interface. In TEAAS, this layer will be implemented as a graphical user interface developed in Java.

10.2.1 tc \l2 "Low Level Design Template - Presentation LayerName

Each component specification for the presentation layer will be identified by the window’s name.

10.2.2 tc \l3 "Section NamePurpose

A description of the window’s design will be documented, including its function within the system.

10.2.3 Composition

Appearance, functionality, data, menu processing, methods and classes, error handling, and security will be identified for the module as described in the sections that follow.

· tc \l4 "Section Composition Appearance – A visual representation of each prototyped window will be documented. If the window has tabs, an image for each tab will be included. tc \l5 "AppearanceFigures should be horizontally centered on the page with no text flowing around them.

· Data – Each data element represented in the window should be documented to identify the information contained in the table that follows.

Control Name
Label Name
Presentation Style
Data Source
Constraints

{Control Name}
{Visible Label}
{Tabular, grid, drop down list}
{Source of the data object data}
{Constraints on data}

Additional information for multi-column types of controls should be included in the following table.

Control Name
Column Name
Display
Data Value
Sort

{Control Name}
{Name of the column}
{The field displayed in the window}
{The field whose value will be saved}
{Column to sort on}

· Functionality – The functionality of each window control should be documented as outlined in the table that follows. Any menu functionality that is unique to this GUI should be identified here.

Control Name
Label Name
Functionality/Event Logic

{Control Name}
{Visible Label}
{Describe event/function functionality}

· Menu processing – Menus and menu items should be documented as outlined in the following table.

Menu Item
Enable (Y/N)
Visible (Y/N)
Toolbar (Y/N)
Toolbar Icon

{Item Name – e.g., File::Open}

{Corresponding icon, if applicable}

· Methods and classes – tc \l5 "Methods and ClassesAll methods and classes used in the component should be identified, including when they will be used.

· Error handling – Error handling for each identified error event should be documented as outlined in the following table.

Window Name
Purpose
Error Condition
User Error Message Text
Error Window Title

{Name of the error window}
{Description of the window and its functionality}
{Condition that causes the error response}
{Error message text presented to the user}
{Title of the window}

· Security – tc \l5 "SecurityUser roles with access to the presentation module will be identified. The level of access for each role will be documented.

10.3 Business Rule Component

The sections that follow identify the design specification elements for business rule components of the application. Business rule components embody the functionality of the application. In TEAAS, these components will be implemented in Java.

10.3.1 tc \l2 "Low Level Design Template - Presentation LayerName

Each component specification for business rule components will be identified by the component’s name.

10.3.2 tc \l3 "Section NamePurpose

A description of the component’s design will be documented, including its function within the system.

10.3.3 Composition

The business rule, associated data, methods and classes, error handling, and security will be identified for the module as described in the sections that follow.

· Business rules – All business rules for the component should be documented.

· Associated data – All data used in the current component should be identified. For each data element identified, a description of how it is used should be provided.

· Methods and classes – tc \l5 "Methods and ClassesAll methods and classes used in the component should be identified, including when they will be used. This should also include the class (if any) this class inherits from and a list of classes that inherit from this class.

· Error handling – Each error condition should be identified and documented as outlined in the following table.

Error Condition
Handling Procedures
Error Message

{Error condition}
{Procedure used to check for and handle the error}
{Error message passed to the presentation layer}

· Security – tc \l5 "SecurityUser roles with access to the component will be identified. The level of access for each role will be documented.

10.4 Interface Definition Language Component

The sections that follow identify the design specification elements for interface definition language (IDL) components of the application. IDL components facilitate communication between the client and server portions of the application. In TEAAS, these components will be implemented using interface definition language.

10.4.1 tc \l2 "Low Level Design Template - Presentation LayerName

Each component specification for IDL components will be identified by the component’s name.

10.4.2 tc \l3 "Section NamePurpose

A description of the component’s design will be documented, including its function within the system.

10.4.3 Composition

The attributes, methods and classes, error handling, and security will be identified for the component as described in the sections that follow.

· Attributes – All attributes defined for the component should be documented.

· Methods and interfaces – All methods and interfaces defined in the current component should be identified. For each, a description of how it is used should be provided.

· Exception Handling – All exception condition should be identified and documented as outlined in the following table.tc \l5 "Methods and Classes

Exception Condition
Handling Procedures
Exception Message

{Exception condition}
{Procedure used to check for and handle the exception}
{Exception message generated}

10.5 Data Access Component

The sections that follow identify the design specification elements for data access components of the application. Data access components are responsible for accessing data in the database. In TEAAS, data access components will be implemented in Java.

10.5.1 tc \l2 "Low Level Design Template - Presentation LayerName

Each component specification for data access components will be identified by the component’s name.

10.5.2 tc \l3 "Section NamePurpose

A description of the component’s design will be documented, including its function within the system.

10.5.3 Composition

Database tables and columns to be accessed, primary keys, and parent-child relationships will be identified. Additionally, methods and classes, error handling, and security will be identified for the module. The following will be identified.

· Tables and columns – tc \l5 "RulesAll database tables and columns to be accessed by the component should be identified.

· Primary keys – tc \l5 "Associated DataThe primary key of each accessed table should be documented.

· Parent-child relationships – tc \l5 "Methods and ClassesAll applicable parent-child relationships should be documented.

· Selection criteria – All applicable selection criteria rules for data extraction should be identified.

· Methods and classes – tc \l5 "Methods and ClassesAll methods and classes used in the component should be identified, including when they will be used.

· Database locking strategy – The strategy to be employed by the component regarding table locking must be outlined.

· Error handling – Each error condition should be identified and documented as outlined in the following table.

Error Condition
Handling Procedures
Error Message

{Error condition}
{Procedure used to check for and handle the error}
{Error message passed to the presentation layer}

· Security – tc \l5 "SecurityUser roles with access to the component will be identified. The level of access for each role will be documented.

11 UNIT TEST STANDARDS

Each software component or module will be unit tested by its developer. The unit testing process will aid in the software development process by formalizing the tests performed. It will assist in mapping the requirements of a particular module to the unit tests. The process consists of the development of the unit test document, and later, the execution of unit tests according to the unit test document.

Unit testing is an iterative procedure. Tests are conducted until the module satisfies all the test conditions in the unit test. This may require changes to modules. There are various unit test procedures that can be adopted. Some of the tests that can be used are: Black Box testing, White Box testing, and Code Coverage testing.

Black Box considers the program to be a “Black Box”; i.e. the interior design and implementation details are assumed as hidden. It entails developing a test with a list of desired inputs into the module and a corresponding list of expected outputs from the module. The module passes the test plan when all the inputs are entered and all the expected outputs are generated. Any deviation from the expected outputs will be noted. The list of inputs can, at least at first, be derived from the requirements. Then, by adding "extreme" cases to the input list a more complete list of test cases can be generated. The list will be reviewed informally by several people, in order to ensure both completeness and non-redundancy.

The Black Box technique is especially useful for modules dealing with user input. This is because the Black Box technique allows the tester to list the various forms of incorrect user input (e.g. entering a floating point when an integer is expected) and the expected results. The detection and handling of erroneous user input can be a very difficult task that Black Box simplifies. However, Black Box does not guarantee that all possible paths to the given outputs are exercised.

White Box involves taking the detailed design of the module and designing tests that make sure all, or as many as possible of the programs paths are executed. Like the Black Box, this involves making a list of inputs and their expected outputs. However, the purpose of each different list of inputs is to make sure that a different program path is taken.

Code Coverage testing consists of taking the code developed from the design and making sure that every line of code is executed at least once, and taking as many paths as possible. This technique is merely a form of White Box, but has the added benefit of testing paths that might not be included in the design.

TEAAS will utilize Black Box, White Box, or Code Coverage testing where appropriate. Black Box testing may be utilized in testing the GUI modules. White Box and/or Code Coverage testing may be used for testing the business rule modules and data access modules.

The inputs to the development of the unit tests are the module specifications. The scope of the unit tests will be to perform functional testing of the module, but not to carry out the entire system test. The objective of the unit test document is to record the unit tests that will be performed according to the module specifications. The unit test document will clearly specify the purpose of the test, test preparation, input, output, and expected results. The document will list any testing tools used and the usage of the same. The setup should be such that the tests are comprehensive, are easily understandable, are repeatable, and can be utilized in designing unit tests for future maintenance efforts.

Once module construction is complete, unit tests are performed with the aid of the unit test document. The results obtained during the tests are logged in the actual results section and any variations are written in the notes section. The person who performs the unit tests will sign and date the document.

The following sections identify general format and content of unit test documents. A unit test document template will be created and used by the TEAAS project team to assure a consistent format.

11.1 Module Description

A brief description of the module will be given.

11.2 Application Release Version

The release version of the application will be documented.

11.3 Tests

There are two types of unit tests that can be conducted. If a new module is being created for the first time and tested, just the unit tests will be performed.

If the tests are being performed on modules that already exist and are modified based on a change request or a maintenance request, there will be two set of tests conducted – baseline and regression tests. The baseline tests are conducted to establish the picture before the module was modified. The baseline tests can often involve negative testing to highlight the errors. The regression tests are performed to confirm the modifications. The regression tests will use the same tests as used in the baseline tests.

The unit test document will include only the sections appropriate to the type of test being conducted. The other tests will be eliminated from the document.

For each type of unit test, the appropriate section will include the following information:

· The module functionality being tested

· The name of the tester performing the unit test

· A description of the test

· Test setup and inputs

· The test sequence

· Expected output and results

· Actual output and results

· Notes.

11.4 Clean Up

All tasks will be identified to return the system and environment to their original state.

11.5 Unit Test Results

The tester will identify whether or not the module passed unit test, and will provide comments as appropriate.

12 SOFTWARE QUALITY CHECKLISTS

During software code inspection, code review, and walkthrough, compliance to project standards will be enforced. Reviewers and developers will use software quality checklists to ensure software work products comply with project standards.

It is understood that a single task can be accomplished in many ways. Code that will work effectively should not be rewritten to its most optimal form, but obvious performance issues should be addressed.

Software quality checklists are not intended to test the functionality of the software work product. Unit test activities will ensure each software work product correctly implements the functionality specified in the module design specification.

In TEAAS, checklist templates will be developed for:

· Presentation components (GUI windows)

· Business rule components

· Interface Definition Language components

· Data access components

· SQL scripts

· PL/SQL scripts

· Database generation scripts.

12.1 Presentation Components

The software quality checklist for presentation components is meant to ensure that the user interface is visually consistent, and that it follows naming conventions and coding standards.

The checklist will ensure the following:

· Each window has been developed according to the project’s visual standards

· All window controls have been named in accordance with naming conventions established for the project

· Code controlling window objects has been developed according to the Java coding standards established for the project

· Presentation components are Year 2000 compliant.

12.2 Business Rule Components

The software quality checklist for business rule components is meant to ensure that the component has been developed in an efficient and consistent manner.

The checklist will ensure the following:

· Components have been developed according to the Java coding standards established for the project

· Components have been developed to perform efficiently

· Components have included appropriate error handling

· Business rule components are Year 2000 compliant.

12.3 Interface Definition Language Components

The software quality checklist for IDL components is meant to ensure that the component has been developed in an efficient and consistent manner.

The checklist will ensure the following:

· Components have been developed according to the Java coding standards established for the project

· Components have been developed to perform efficiently

· Components include appropriate exception handling

· All appropriate attributes and methods have been identified.

12.4 Data Access Components

The software quality checklist for data access components is meant to ensure that the component has been developed in an efficient and consistent manner.

The checklist will ensure the following:

· Components have been developed according to the Java coding standards established for the project

· Components have been developed to perform efficiently

· Components include appropriate error handling

· Embedded SQL has been written according to the SQL coding standards developed for the project

· Database locking strategies have been applied correctly

· Data access components are Year 2000 compliant.

12.5 SQL Scripts

The software quality checklist for SQL scripts is meant to ensure that the code has been written in an efficient and consistent manner.

The checklist will ensure the following:

· Scripts have been developed to perform efficiently

· Code has been written according to the SQL coding standards developed for the project

· SQL scripts are Year 2000 compliant.

12.6 PL/SQL Scripts

The software quality checklist for PL/SQL scripts is meant to ensure that the code has been written in an efficient and consistent manner.

The checklist will ensure the following:

· Scripts have been developed to perform efficiently

· Code has been written according to the PL/SQL Coding Standards developed for the project

· PL/SQL scripts are Year 2000 compliant.

12.7 Database Generation Scripts

The software quality checklist for database generation scripts is meant to ensure that the code is efficient and consistent.

The checklist will ensure the following:

· Scripts have been developed to perform efficiently

· Scripts follow the database naming conventions established for the project

· Scripts are Year 2000 compliant.

13 DOCUMENTATION STANDARDS

This section defines the general structure, format, content, and mechanism for dissemination of TEAAS user and operations documents.

13.1 General

TEAAS user and operations documentation will be developed in Microsoft Word 97 for dissemination as printed documents.

The document style will follow the standards in effect at the DOT Keane Engagement, currently documented in the Template Creation Template v1.0.

Documents should be written in an active voice, using clear language. They should walk the user through each business function, describing the actions to be taken in a step-by-step manner, using screen captures to enhance understanding.

13.2 Conventions

There will be a section at the beginning of each document identifying style conventions (e.g., for keyboard commands and user-entered text). TEAAS documentation will use the following conventions:

· Bold

· Keyboard commands or keys

· Menu and menu option names

· GUI widget names or captions.

Examples:
Enter key

File or Edit menu

OK or Cancel button

· Italic

· File and directory names.

Example:

MyQuery.txt
· Monospace

· User-entered text.

Example:

Anytown
Additional conventions include the following:

· When two or more keys are used in combination, they will be shown with a plus sign (“+”) between them, in the style of the body text. No spaces will be placed between the plus sign and the keys that precede and follow it.

Example:
Ctrl+Alt+Del
· When identifying a menu option on a specific menu, the navigation will be shown from the first selection to the last using right arrows between each selection.

Example:

File(Print
· Window and dialog titles should be documented in title case, without enclosing quotation marks.

Example:

Features Maintenance Form

13.3 Screen Captures

Screen captures should be made using Alt+Print Screen, which captures the active window rather than the entire screen.

The screen capture should be placed into the document using Edit(Paste Special. In the Paste Special dialog, Bitmap will be selected as the format, and the Float over text checkbox will be deselected.

The graphic that follows shows the correct settings in the Paste Special dialog box.

[image: image23.png]ste Special HE|

Souwrce: Unknown

o Cancel
@ paste:

€t i |Devies Indspendent Bimap.

T Flaat gver text
of T Oty ascn

t———————————————————_

., Insertsthe contents o the Ciphoard as a bitmap

[T piture. Thisfomat cantake upa ot of memory and
[disk space, but s exactly what you see on the

Screen captures should be center-aligned with no extra lines of space between the graphic and the text that precedes or follows it.

13.4 User Documentation

TEAAS user documentation will be disseminated as a printed document. If, at a later date, the client requests the content be developed into online Help for the application, the Word document should be used in conversion to application Help files.

The main body of the document will address functionality common to all TEAAS users regardless of their role. Separate sections of the document will address functionality that is specific to each user role (i.e., Public Users, Technical Users, and the TEAAS Data Maintainer).

13.5 Operations Documentation

TEAAS operations documentation will document the tasks required for the TEAAS System Administrator to support the application, including but not limited to:

· Installing the application for new users

· Creating or maintaining TEAAS users (security)

· Data extractions

· Mileposting ordinances

· Start up and shut down

· Backup and recovery

· System-level error messages.

TEAAS operations documentation will be disseminated as a printed document. If, at a later date, the client requests the content be developed into online Help for the application, the Word document should be used in conversion to application Help files.

[image: image24.wmf][image: image25.wmf]KEANE

[image: image26.wmf]KEANE

_987405895

_989227405

_990518947

_990525969

_990526006

_990016450

_989915355

_987406047

_987406206

_989041702

_989041772

_987408647

_987406128

_987405972

_987405129.bin

_987405169.bin

_987405201.bin

_987405147.bin

_987405080.bin

_987405105.bin

_987405051.bin

